I. Approximation par des polynômes

I.1. Approximation locale

1. THÉORÈME (formule de Taylor-Lagrange). Soient $a, b \in \mathbf{R}$ deux réels avec a < b et $f : [a, b] \longrightarrow \mathbf{R}$ une fonction de classe \mathscr{C}^n sur [a, b] et dérivable n + 1 fois sur]a, b[. Alors il existe un réel $c \in [a, b]$ tel que

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}.$$

2. EXEMPLE. Pour tout réel $x \ge 0$, on a

$$x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}.$$

3. Théorème (formule de Taylor-Young). Soient $I \subset \mathbf{R}$ un intervalle et $f \in \mathscr{C}^n(I, \mathbf{R})$ une fonction. Soit $a \in I$ un réel tel que la fonction f soit n+1 fois dérivable en ce point. Alors

$$f(a+h) = \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} h^k + o_{h\to 0}(h^{n+1}).$$

- 4. Exemple. Lorsque $t \longrightarrow 0$, on trouve $\sin t = t + o(t^2)$ et $\cos t = 1 t^2/2 + o(t^2)$.
- 5. Théorème (formule de Taylor-Lagrange avec reste intégral). Soient E un espace de Banach et $f \in \mathscr{C}^{n+1}([a,b],E)$ une fonction. Alors

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{n} + \int_{a}^{b} \frac{f^{(n+1)}(t)}{(n+1)!} (b-t)^{n} dt.$$

6. APPLICATION (lemme d'Hadamard). Soient $k \in \mathbb{N}$ un entier et $f : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe \mathscr{C}^{∞} telle que

$$\forall i \in [0, k], \qquad f^{(i)}(0) = 0.$$

Alors il existe une fonction $g: \mathbf{R} \longrightarrow \mathbf{R}$ de classe \mathscr{C}^{∞} telle que

$$\forall x \in \mathbf{R}, \qquad f(x) = x^k g(x).$$

I.2. Densité des polynômes dans les fonctions continues

7. DÉFINITION. Soient $n \in \mathbf{N}^*$ un entier et $f : [0,1] \longrightarrow \mathbf{C}$ une fonction continue. Son n-ième polynôme de Bernstein est le polynôme

$$B_n f \coloneqq \sum_{k=0}^n \binom{n}{k} X^k (1-X)^{n-k} f\left(\frac{k}{n}\right) \in \mathbf{C}[X].$$

8. DÉFINITION. Le module de continuité d'une fonction continue $f:[0,1] \longrightarrow \mathbb{C}$ est la fonction $\omega_f \colon \mathbb{R}_+^* \longrightarrow \mathbb{R}$ définie par l'égalité

$$\omega_f(h) := \sup\{|f(u) - f(v)| \mid u, v \in [0, 1], |u - v| \le h\}.$$

- 9. Lemme. Soit $f:[0,1] \longrightarrow \mathbf{C}$ une fonction continue. Alors
 - lorsque $h \longrightarrow 0$, on a $\omega_f(h) \longrightarrow 0$;
 - pour tous réels $\lambda, t \geq 0$, on a $\omega_f(\lambda t) \leq (\lambda + 1)\omega_f(t)$.

- 10. Théorème (Bernstein). Soit $f:[0,1] \longrightarrow \mathbb{C}$ une fonction continue. Alors
 - la suite $(B_n f)_{n \in \mathbb{N}}$ converge uniformément vers la fonction f sur [0,1];
 - plus précisément, il existe une constante $C\geqslant 0$ telle que

$$\forall n \in \mathbf{N}^*, \qquad \|f - B_n f\|_{\infty} \leqslant C \omega_f \left(\frac{1}{\sqrt{n}}\right).$$

- 11. COROLLAIRE (théorème de Weierstrass). Toute fonction continue d'un intervalle [a, b] dans \mathbf{C} est une limite uniforme de fonctions polynomiales sur [a, b].
- 12. Contre-exemple. Il est nécessaire que l'intervalle de définition soit fermé. En effet, sur \mathbf{R} , toute limite uniforme de fonctions polynomiales est encore une fonction polynomiale.
- 13. Application. Toute fonction continue $f:[a,b] \longrightarrow \mathbb{C}$ vérifiant

$$\forall n \in \mathbf{N}, \qquad \int_a^b t^n f(t) \, \mathrm{d}t = 0$$

est identiquement nulle.

I.3. Interpolation polynomiale

14. DÉFINITION. Soient $x_0, \ldots, x_n \in [a, b]$ des réels deux à deux distincts et $i \in [0, n]$ un entier. On pose

$$\ell_i := \prod_{j \neq i} \frac{X - x_j}{x_i - x_j} \in \mathbf{R}[X].$$

- 15. Remarque. Ces polynômes vérifient $\ell_i(x_j) = \delta_{i,j}$.
- 16. THÉORÈME. Soit $f:[a,b] \longrightarrow \mathbf{R}$ une fonction continue. Alors il existe un unique polynôme $p_n \in \mathbf{R}[X]$ tel que

$$\forall i \in [0, n], \qquad p_n(x_i) = f(x_i).$$

Il s'agit du polynôme

$$p_n = \sum_{i=0}^n f(x_i)\ell_i.$$

17. THÉORÈME. Soit $f: [a, b] \longrightarrow \mathbf{R}$ une fonction n+1 fois dérivable. Alors

$$||f - p_n||_{\infty} \le \frac{1}{(n+1)!} ||\pi_{n+1}||_{\infty} ||f^{(n+1)}||_{\infty} \text{ avec } \pi_{n+1} := \prod_{j=0}^{n} (X - x_j) \in \mathbf{R}[X].$$

I.4. Les polynômes orthogonaux

18. DÉFINITION. Soit I un intervalle de \mathbf{R} . Une fonction poids sur I est une fonction mesurable $\rho\colon I\longrightarrow \mathbf{R}_+^*$ telle que

$$\forall n \in \mathbf{N}, \qquad \int_{I} |x|^{n} \rho(x) \, \mathrm{d}x < +\infty.$$

L'ensemble $L^2(I, \rho)$ des fonctions de carré intégrable pour la mesure ρdx est muni du produit scalaire définit par l'égalité $\langle f, g \rangle = \int_I f \overline{g} \rho$.

19. REMARQUE. Par le procédé de Gram-Schmidt appliqué à la famille $(X^n)_{n\in\mathbb{N}}$,

20. Théorème. Soit $\rho\colon I\longrightarrow \mathbf{R}_+^*$ une fonction poids et $\alpha>0$ un réel vérifiant

$$\int_{I} e^{\alpha|x|} \rho(x) \, \mathrm{d}x < +\infty.$$

Alors la famille des polynômes orthogonaux est une base hilbertienne de $L^2(I, \rho)$.

II. Convolution, approximation et régularisation

II.1. Produit de convolution

 $\mathbf{D}_{\mathbf{2}}$

21. DÉFINITION. Le produit de convolution de fonctions boréliennes $f, g: \mathbf{R}^d \longrightarrow \mathbf{K}$ est, lorsqu'elle est bien définie, la fonction $f \star g: \mathbf{R}^d \longrightarrow \mathbf{K}$ telle que

$$f \star g(x) := \int_{\mathbf{R}^d} f(x - y)g(y) \, dy, \qquad x \in \mathbf{R}^d.$$

- 22. EXEMPLE. La convolée $\mathbf{1}_{]-1,1[}\star\mathbf{1}_{]-1,1[}$ est une fonction triangle.
- 23. Remarque. Dès qu'une fonction $f \star g$ ou $g \star f$ est bien définie, l'autre l'est aussi et on a $f \star g = g \star f$.
- 24. Proposition. Soient $f, g: \mathbf{R}^d \longrightarrow \mathbf{K}$ deux fonctions. Alors
 - si $f, g \in L^1(\mathbf{R}^d)$, alors $f \star g \in L^1(\mathbf{R}^d)$;
 - si $f \in L^{\infty}(\mathbf{R}^d)$ et $g \in L^1(\mathbf{R}^d)$, alors $f \star g \in L^{\infty}(\mathbf{R}^d)$;
 - si la fonction f est bornée sur tout compact, alors la convolée $f \star g$ est définie.
- 25. DÉFINITION. Soit $f: \mathbf{R}^d \longrightarrow \mathbf{K}$ une fonction borélienne. Notons Ω l'ensemble des ouverts sur lesquels la fonction f est nulle presque partout. Le *support* de la fonction f est l'ensemble

$$\operatorname{supp} f := \left(\bigcup_{\omega \in \Omega} \omega\right)^{\operatorname{c}}.$$

26. Théorème. Soient $f \in \mathscr{C}^k(\mathbf{R}^d)$ une fonction et $g \in L^1(\mathbf{R}^d)$ une fonction à support compact. Alors la fonction $f \star g$ est de classe \mathscr{C}^k et

$$\partial^{\alpha}(f \star g) = (\partial^{\alpha} f) \star g, \qquad a \in \mathbf{N}^{n}, \ |\alpha| \leqslant k.$$

- 27. Proposition. Soient $f,g\colon \mathbf{R}^d \longrightarrow \mathbf{K}$ deux fonctions boréliennes telles que leur convolée $f\star g$ soit bien définie. Alors
 - $-\operatorname{supp}(f\star g)\subset\overline{\operatorname{supp} f+\operatorname{supp} g}$;
 - si le support de la fonction f est compact, alors supp $(f \star g)$ ⊂ supp f + supp g;
 - si les support des fonctions f et g sont compacts, alors celui de la convolée $f \star g$ l'est aussi.

II.2. Approximation de l'unité et régularisation

- 28. DÉFINITION. Une approximation de l'unité est une suite $(\rho_n)_{n\in\mathbb{N}}$ de L¹(\mathbb{R}^d) vérifiant les points suivants :
 - les fonctions α_n sont positives et de masse 1;
 - pour tout réel $\varepsilon > 1$, on a

$$\int_{\|x\| \geqslant \varepsilon} \alpha_n(x) \, \mathrm{d}x \longrightarrow 0.$$

29. LEMME. Soit $\rho_0 \colon \mathbf{R}^d \longrightarrow \mathbf{R}$ la fonction définie par l'égalité

$$\rho_0(x) := \begin{cases} \exp(-1/(1 - ||x||^2)) & \text{si } ||x|| < 1, \\ 0 & \text{sinon.} \end{cases}$$

On pose $\rho := (\int_{\mathbf{R}^d} \rho_0)^{-1} \rho_0$. Alors la fonction ρ est positive, de masse 1 et elle vérifie supp $\rho \subset \{x \in \mathbf{R}^d \mid ||x|| \leq 1\}$.

- 30. Exemple. Les fonctions $\rho_n := n^d \rho(n \cdot)$ constitue une approximation de l'unité.
- 31. Théorème. Soient $K \subset \mathbf{R}^d$ un compact et $\Omega \subset K$ un voisinage ouvert. Alors il existe une fonction $\theta \in \mathscr{C}^{\infty}_{c}(\mathbf{R}^d)$ telle que
 - $-\theta = 1 \text{ sur } K;$
 - $-\theta = 0 \operatorname{sur} \Omega^{c}$;
 - $-0 \leqslant \theta \leqslant 1.$

II.3. Applications : théorèmes de densités

- 32. PROPOSITION. L'espace $\mathscr{C}_{c}^{k}(\mathbf{R}^{d})$ est dense dans $\mathscr{C}^{k}(\mathbf{R}^{d})$. Pour tout $p \in [1, +\infty[$, l'espace $L_{c}^{p}(\mathbf{R}^{d})$ est dense dans $L^{p}(\mathbf{R}^{d})$.
- 33. THÉORÈME. Soit $(\rho_n)_{n\in\mathbb{N}}$ une approximation de l'unité.
 - Soit $f \in L_c^p(\mathbf{R}^d)$ avec $p \in [1, +\infty[$. Alors la suite $(\rho_n \star f)_{n \in \mathbf{N}}$ converge dans L^p vers la fonction f.
 - Soit $f \in \mathscr{C}_c(\mathbf{R}^n)$. Alors la suite $(\rho_n \star f)_{n \in \mathbf{N}}$ converge uniformément vers la fonction f sur \mathbf{R}^d .
- 34. COROLLAIRE. Pour tout $p \in [1, +\infty[$, l'espace $\mathscr{C}_{c}^{\infty}(\mathbf{R}^{d})$ est dense dans $L^{p}(\mathbf{R}^{d})$.
- 35. APPLICATION (lemme de Riemann-Lebesgue). Pour une fonction $f \in L^1([a,b])$, on a

$$\int_{a}^{b} f(t)e^{int} dt \xrightarrow[n \to \pm \infty]{} 0.$$

III. Approximation des fonctions périodiques

III.1. Les coefficients de Fourier

- 36. NOTATION. On définit l'ensemble $L^2(\mathbf{T})$ des fonctions 2π -périodiques qui sont intégrables sur l'intervalle $]0, 2\pi[$.
- 37. DÉFINITION. Soit $n \in \mathbf{Z}$. On définit la fonction $e_n \in L^2(\mathbf{T})$ par l'égalité $e_n(x) = e^{int}$, $t \in \mathbf{R}$.

Pour une fonction $f \in L^2(\mathbf{T})$, son n-ième coefficient de Fourier est le complexe

$$c_n(f) := \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt.$$

38. Exemple. On a

$$c_n(\sin) = \begin{cases} \pm 1/2i & \text{si } n = \pm 1, \\ 0 & \text{sinon.} \end{cases}$$

2

39. DÉFINITION. Pour une fonction $f \in L^1(\mathbf{T})$ et un entier $N \in \mathbf{N}^*$, on note

$$S_N(f) := \sum_{n=-N}^N c_n(f)e_n$$
 et $\sigma_N(f) := \frac{1}{N} \sum_{n=0}^{N-1} S_n(f)$.

III.2. Noyaux de Fejér et de Dirichlet

40. DÉFINITION. Soit $N \in \mathbb{N}$. Le noyau de Dirichlet d'ordre N est la fonction

$$D_N := \sum_{n=-N}^{N} e_n.$$

- 41. Proposition. Le noyau de Dirichlet vérifie les points suivants.
 - La fonction D_N est paire et $\int_0^{2\pi} D_N(t) dt = 2\pi$.
 - Pour tout réel $x \in \mathbf{R}$, on a

$$D_N(x) = \frac{\sin((N+1/2)x)}{\sin(x/2)}.$$

- Pour toute function $f \in L^1(\mathbf{T})$, on a $S_N(f) = f \star D_N$.
- On a $||D_N||_1 \longrightarrow +\infty$.
- 42. DÉFINITION. Si $N \neq 0$, le noyau de Fejér d'ordre N est la fonction

$$K_N := \frac{1}{N} \sum_{n=0}^{N-1} D_n.$$

- 43. Proposition. Le noyau de Fejér vérifie les points suivants.
 - Pour tout réel $x \in \mathbf{R}$, on a

$$K_N(x) = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N}\right) e_n = \frac{1}{N} \left(\frac{\sin(Nx/2)}{\sin(x/2)}\right)^2.$$

- On a $||K_N||_1 = 1$.
- Pour toute function $f \in L^1(\mathbf{T})$, on a $f \star K_N = \sigma_N(f)$.

III.3. Théorèmes de Fejér et de Dirichlet

- 44. THÉORÈME (Fejér). Les deux points suivants constituent le théorème.
 - Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue 2π -périodique. Alors

$$\forall n \in \mathbf{N}^*, \quad \|\sigma_N(f)\|_{\infty} \leqslant \|f\|_{\infty}$$

et

$$\|\sigma_N(f) - f\|_{\infty} \longrightarrow 0.$$

- Soit $f \in L^p(\mathbf{T})$. Alors on la même conclusion avec la norme p.
- 45. COROLLAIRE. Soient $f, g \in L^1(\mathbf{T})$. Si $c_n(f) = c_n(g)$ pour tout $n \in \mathbf{N}$, alors f = gpresque partout.
- 46. COROLLAIRE. La famille $(e_n)_{n\in\mathbb{N}}$ est une famille totale de L²(T). En particulier, la formule de Parseval s'applique.
- 47. COROLLAIRE. Soient $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue 2π -périodique et $x_0 \in \mathbf{R}$ un réel. Alors

$$S_N(f, x_0) \longrightarrow \ell \in \mathbf{C} \implies \ell = f(x_0).$$

48. Proposition. Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue 2π -périodique telle que la suite $(S_N(f))_{N\in\mathbb{N}}$ converge normalement sur **R**. Alors

$$f = \sum_{n = -\infty}^{+\infty} c_n(f)e_n.$$

49. PROPOSITION. Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue 2π -périodique de classe \mathscr{C}^1 par morceaux. Alors la série $(S_N(f))_{N\in\mathbb{N}}$ converge normalement vers la fonction f.

50. APPLICATION. Soit $f: \mathbf{R} \longrightarrow \mathbf{R}$ une fonction. L'équation de la chaleur est le problème de Cauchy

$$\begin{cases} \partial_t u(x,t) = \partial_{xx} u(x,t), & x \in \mathbf{R}, \ t > 0, \\ \lim_{t \to 0} u(x,t) = f(x) & x \in \mathbf{R}. \end{cases}$$
 (1)

On suppose que la fonction f est 1-périodique et de classe \mathscr{C}^2 . Alors il existe une unique solution $u \colon \mathbf{R} \times \mathbf{R}_{+}^{*} \longrightarrow \mathbf{R}$ au problème (1) qui est 1-périodique par rapport à la variable d'espace.

- 51. THÉORÈME (Dirichlet). Soient $f \in L^1(\mathbf{T})$ et $x_0 \in \mathbf{R}$. On suppose que
 - les limites $f^+ := \lim_{t \longrightarrow 0^+} f(x_0 + t)$ et $f^- := \lim_{t \longrightarrow 0^-} f(x_0 + t)$ existent;
 - il existe une constante $\delta > 0$ tel que

$$\int_0^\delta \frac{|f(x_0 \pm t) - f^{\pm}|}{t} \, \mathrm{d}t < +\infty.$$

Alors

$$S_N(f)(x_0) \longrightarrow \frac{1}{2}(f^+ + f^-).$$

52. APPLICATION. Soit $a \in \mathbb{C} \setminus \mathbb{Z}$. La fonction $f \in L^{\infty}(\mathbb{T})$ définie par l'égalité $f(t) = e^{iat}, \qquad t \in [-\pi, \pi[$

vérifie les hypothèses du théorème de Dirichlet au point π et on tire l'égalité

$$\pi \cot \pi a = \frac{1}{a} + 2a \sum_{n=1}^{+\infty} \frac{1}{a^2 - n^2}.$$

Marc Briane et Gilles Pagès. Théorie de l'intégration. Vuibert, 2012.

Jean-Pierre Demailly. Analyse numérique et équations différentielles. EDP Sciences, 2006.

Xavier Gourdon. Analyse. 2e édition. Ellipses, 2008.

^[1] [2] [3] [4] Hervé Queffélec et Claude Zuily. Analyse pour l'agrégation. 5° édition. Dunod, 2020.