Leçon 239. Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.

1. NOTATION. Soient X un espace métrique et (E, \mathscr{A}, μ) un espace mesuré. On prend une fonction $f: X \times E \longrightarrow \mathbf{C}$. Pour un élément $x \in X$, on considérera la quantité

$$F(x) := \int_X f(x,t) \,\mathrm{d}\mu(t)$$

lorsqu'elle est bien définie, c'est une intégrale à paramètre.

1. Régularité des intégrales à paramètre

1.1. Continuité

- 2. Théorème. On suppose que
- (i) pour tout $x \in X$, la fonction $f(x, \cdot)$ est mesurable;
- (ii) pour presque tout $t \in E$, la fonction $f(\cdot, t)$ est continue en un point $x_0 \in E$;
- (iii) il existe une fonction $\varphi \in L^1(E)$ telle que, pour presque tout $t \in E$, on ait

$$\forall x \in X, \qquad |f(x,t)| \leqslant \varphi(t).$$

Alors la fonction $F: E \longrightarrow \mathbf{C}$ est continue au point x_0 .

- 3. Remarque. On peut remplacer le troisième point, appelée hypothèse de domination par l'assertion suivante :
- (iii') pour tout compact $K \subset X$, il existe une fonction $\varphi_K \in L^1(E)$ telle que, pour presque tout $t \in E$, on ait

$$\forall x \in K, \qquad |f(x,t)| \leqslant \varphi_K(t).$$

En particulier, lorsque $E=\mathbf{R}$, on peut se limiter aux compacts de la forme K=[a,b]. Cette remarque s'appliquera aux « théorèmes de convergence dominée » qui vont suivre.

4. APPLICATION. Soit $f \in L^1(\mathbf{R})$ une fonction intégrable pour la mesure de Lebesgue. Pour tout réel $a \in \mathbf{R} \cup \{-\infty\}$, la fonction

$$x \in \mathbf{R} \longmapsto \int_{a}^{x} f(t) \, \mathrm{d}t$$

est continue sur R.

5. Exemple. La fonction

$$t \in \mathbf{R} \longmapsto \int_{\mathbf{R}} e^{-t^2} e^{ixt} \, \mathrm{d}t$$

est continue sur R. La fonction gamma d'Euler

$$\Gamma : \begin{vmatrix} \mathbf{R}_+^* \longrightarrow \mathbf{C}, \\ x \longmapsto \int_0^{+\infty} t^{x-1} e^{-t} \, \mathrm{d}t \end{vmatrix}$$

est continue sur \mathbf{R}_{\perp}^* .

6. Contre-exemple. L'hypothèse de domination est essentielle : la fonction

$$x \in \mathbf{R} \longmapsto \int_0^{+\infty} xe^{-xt} dt = \begin{cases} 1 & \text{si } x \neq 0, \\ 0 & \text{sinon} \end{cases}$$

n'est pas continue en 0.

1.2. Encore plus de régularité

- 7. Théorème. On suppose que l'ensemble X est un intervalle ouvert $I \subset \mathbf{R}$ et que
 - (i) pour tout $x \in I$, la fonction $f(x, \cdot)$ est intégrable;
- (ii) pour presque tout $t \in E$, la fonction $f(\cdot,t)$ est dérivable sur l'intervalle I de dérivée $\partial_x f(\cdot,t)$;
- (iii) il existe une fonction $\varphi \in L^1(E)$ telle que, pour presque tout $t \in E$, on ait

$$\forall x \in X, \qquad |\partial_x f(x,t)| \leqslant \varphi(t).$$

Alors

- pour tout $x \in I$, la fonction $\partial_x f(\cdot, t)$ est intégrable;
- -la fonction ${\cal F}$ est dérivable sur ${\cal I}$ et elle vérifie

$$\forall x \in I, \qquad F'(x) = \int_E \partial_x f(x, t) \, \mathrm{d}t.$$

8. Contre-exemple. L'hypothèse (iii) est encore indispensable : la fonction

$$x \in \mathbf{R} \longmapsto \int_0^{+\infty} x^2 e^{-|x|t} \, \mathrm{d}t$$

n'est pas dérivable en 0.

- 9. COROLLAIRE. Soit $k \in \mathbb{N}$. On suppose que
- (i) pour tout $x \in I$, la fonction $f(x, \cdot)$ est intégrable;
- (ii) pour presque tout $t \in E$, la fonction $f(\cdot,t)$ est de classe \mathscr{C}^k sur l'intervalle I de dérivée $\partial_x^k f(\cdot,t)$;
- (iii) pour tout entier $j \in [1, k]$, il existe une fonction $\varphi_j \in L^1(E)$ telle que, pour presque tout $t \in E$, on ait

$$\forall x \in X, \qquad |\partial_x^i f(x,t)| \leqslant \varphi_i(t).$$

Alors

- pour tout $x \in I$ et tout $i \in [1, k]$, la fonction $\partial_x^i f(\cdot, t)$ est intégrable;
- la fonction F est de classe \mathscr{C}^k sur I et elle vérifie

$$\forall x \in I, \ \forall i \in [0, k] \qquad F^{(i)}(x) = \int_E \partial_x^i f(x, t) \, \mathrm{d}t.$$

10. Exemple. La fonction Γ est de classe \mathscr{C}^{∞} sur \mathbf{R}_{+}^{*} et elle vérifie

$$\Gamma^{(n)}(x) = \int_0^{+\infty} t^{x-1} e^{-t} (\ln t)^n dt, \qquad n \in \mathbf{N}, \ t > 0.$$

1.3. Holomorphie

- 11. Théorème. On suppose que l'ensemble X est un ouvert $\Omega \subset \mathbf{C}$ et que
 - (i) pour tout $z \in \Omega$, la fonction $f(z, \cdot)$ est intégrable;
- (ii) pour presque tout $t \in E$, la fonction $f(\cdot, t)$ est holomorphe sur Ω ;
- (iii) il existe une fonction $\varphi \in L^1(E)$ telle que, pour presque tout $t \in E$, on ait

$$\forall z \in \Omega, \qquad |f(z,t)| \leqslant \varphi(t).$$

$$\forall z \in \Omega, \qquad F'(z) = \int_E \partial_z f(z, t) \, dt.$$

12. Exemple. La fonction zêta de Riemann

$$\zeta : \left| \begin{cases} \operatorname{Re} > 1 \end{cases} \longrightarrow \mathbf{C}, \\ s \longmapsto \sum_{n=1}^{+\infty} n^{-s} \right|$$

se prolonge en une fonction holomorphe sur l'ouvert $\{Re > 0\} \setminus \{1\}$ en posant

$$\zeta(s) = \lim_{N \to +\infty} \left(\sum_{n=1}^{N} n^{-s} + \frac{N^{1-s}}{1-s} \right).$$

13. Théorème. La fonction Γ : {Re > 0} \longrightarrow **C** se prolonge en une fonction holomorphe sur l'ouvert **C** \ **Z**_e et elle vérifie

$$\forall z \in \mathbf{C} \setminus \mathbf{Z}_-, \qquad \Gamma(z+1) = z\Gamma(z).$$

Par ailleurs, elle ne possède pas de zéro et la fonction $1/\Gamma$ est holomorphe sur tout le plan ${\bf C}.$

2. Produit de convolution et régularisation

2.1. Le produit de convolution

14. DÉFINITION. Pour deux fonctions $f,g\colon \mathbf{R}^n\longrightarrow \mathbf{C}$, lorsqu'elle est bien définie, la quantité

$$f \star g(x) := \int_{\mathbf{R}^n} f(x - y)g(y) \, \mathrm{d}y, \qquad x \in \mathbf{R}^n$$

fournit une fonction $f \star g \colon \mathbf{R}^n \longrightarrow \mathbf{C}$, appelée le produit de convolution ou la fonction convolée des fonctions f et g.

- 15. Remarque. Cette définition a un sens lorsqu'on est dans un des cas suivants :
 - si $f \in L^1(\mathbf{R}^n)$ et $g \in L^1(\mathbf{R}^n)$, alors $f \star g \in L^1(\mathbf{R}^n)$;
 - si $f \in L^{\infty}(\mathbf{R}^n)$ et $g \in L^1(\mathbf{R}^n)$, alors $f \star g \in L^{\infty}(\mathbf{R}^n)$;
 - si f est bornée sur tout compact et g est à support compact, alors $f\star g$ existe.
- 16. Exemple. La convolée $\mathbf{1}_{[-1,1]}\star\mathbf{1}_{[-1,1]}$ est une fonction triangle.
- 17. THÉORÈME. Soient $p \ge 1$ un réel ou l'infini, $f \in L^1(\mathbf{R}^n)$ et $g \in L^p(\mathbf{R}^n)$. Alors la convolée $f \star g$ est bien définie, elle appartient à $L^p(\mathbf{R}^n)$ et

$$||f \star g||_p \leqslant ||f||_1 ||g||_p.$$

- 18. Proposition. Lorsqu'il est bien défini, le produit de convolution est commutatif.
- 19. THÉORÈME. Soient $f \in \mathcal{C}^k(\mathbf{R}^n)$ une fonction de classe \mathcal{C}^k et $g \in L^1(\mathbf{R}^n)$ une fonction à support compact. Alors la convolée $f \star g$ est de classe \mathcal{C}^k et

$$\partial^{\alpha}(f \star g) = (\partial^{\alpha} f) \star g, \quad \forall \alpha \in \mathbf{N}^{n}, \ |\alpha| \leq k.$$

20. DÉFINITION. Soit $f: \mathbf{R}^n \longrightarrow \mathbf{C}$ une fonction. Notons $\mathscr{O} \subset \mathscr{P}(\mathbf{R}^n)$ l'ensemble des ouverts $\omega \subset \mathbf{R}^n$ sur lesquelles la fonction f est nulle presque partout. La fonction f

est nulle presque partout sur l'ouvert

$$\Omega := \bigcup_{\omega \in \mathscr{O}} \omega.$$

Son support est l'ensemble supp $f := \mathbf{R}^n \setminus \Omega$.

- 21. Proposition. Soient $f \in L^1(\mathbf{R}^n)$ et $g \in L^p(\mathbf{R}^n)$.
 - Alors supp $(f \star g) \subset \overline{\text{supp } f + \text{supp } g}$.
 - Si les fonctions f et g sont à support compact, alors la convolée $f \star g$ l'est aussi.
- 22. Théorème. Soient $f \in \mathscr{C}_{c}(\mathbf{R}^{n})$ et $g \in L^{1}_{loc}(\mathbf{R}^{n})$. Alors la convolée $f \star g$ est continue.

2.2. Identité approchée

- 23. DÉFINITION. Une identité approchée est une suite $(\rho_k)_{k \in \mathbb{N}}$ de fonctions intégrables sur \mathbb{R}^d vérifiant les points suivants :
 - les fonction ρ_k sont presque partout positives;
 - elles sont de masse une;
 - pour tout réel $\eta > 0$, on a

$$\int_{\|x\| > \eta} \rho_k(x) \, \mathrm{d}x \xrightarrow[k \to +\infty]{} 0.$$

24. EXEMPLE. On considère la fonction $\rho \colon \mathbf{R}^n \longrightarrow \mathbf{R}$ définie par

$$\rho(x) = \begin{cases} \exp[(\|x\|^2 - 1)^{-1}] & \text{si } \|x\| < 1, \\ 0 & \text{sinon.} \end{cases}$$

Alors la suite $(\rho_k)_{k \in \mathbb{N}}$ définie par

$$\rho_k(x) = Ck^n \rho(kx) \quad \text{avec} \quad C := \left(\int_{\mathbf{R}^n} \rho(x) \, \mathrm{d}x\right)^{-1}$$

est une identité approchée.

- 25. PROPOSITION. Soit $f \in \mathcal{C}(\mathbf{R}^n)$. Alors la suite $(\rho_k \star f)_{k \in \mathbf{N}}$ converge uniformément sur tout compact de \mathbf{R}^n .
- 26. Proposition. Soient $p \in [1, +\infty[$ et $f \in L^p(\mathbf{R}^n)$. Alors

$$\|\rho_k \star f - f\|_p \longrightarrow 0.$$

27. COROLLAIRE. Soient $p \in [1, +\infty[$ et $\Omega \subset \mathbf{R}^n$ un ouvert. Alors l'espace $\mathscr{C}_{\mathbf{c}}^{\infty}(\Omega)$ est dense dans $L^p(\Omega)$.

3. Transformation de Fourier et application

3.1. La transformée de Fourier

28. DÉFINITION. La transformée de Fourier d'une fonction intégrable $f \in L^1(\mathbf{R}^n)$ est la fonction $\hat{f} : \mathbf{R}^n \longrightarrow \mathbf{C}$ définie par

$$\hat{f}(\xi) = \int_{\mathbf{R}^n} e^{-i\langle \xi, x \rangle} f(x) \, \mathrm{d}x.$$

29. Exemple. Soit a > 0. La transformée de Fourier de l'indicatrice $\mathbf{1}_{[-a,a]}$ est

$$\xi \in \mathbf{R} \longmapsto \frac{\sin(2\pi\xi)}{\pi\xi}.$$

La transformée de Fourier de la fonction $x \in \mathbf{R} \longmapsto e^{-a|x|^2}$ est

$$\xi \in \mathbf{R} \longmapsto \left(\frac{\pi}{a}\right)^{n/2} e^{-|\xi|/4a}.$$

- 30. THÉORÈME. Soit $f \in L^1(\mathbf{R}^n)$. Alors la fonction \hat{f} est continue et elle tend vers zéro en l'infini.
- 31. Proposition. Soient $f, g \in L^1(\mathbf{R}^n)$. Alors $\widehat{f \star g} = \widehat{f} \cdot \widehat{g}$.
- 32. DÉFINITION. Une fonction de $\mathscr{C}^{\infty}(\mathbf{R}^n)$ est de Schwartz si toutes ses dérivées sont à décroissance rapide, c'est-à-dire que leur produit par tout polynôme est borné. On note $\mathscr{S}(\mathbf{R}^n)$ l'ensemble des fonctions de Schwartz sur \mathbf{R}^n .
- 33. THÉORÈME. La transformation de Fourier sur $\mathscr{S}(\mathbf{R}^n)$ est à valeurs dans $\mathscr{S}(\mathbf{R}^n)$.
- 34. Théorème (*Plancherel*). Il existe une application $f \in L^2(\mathbf{R}^n) \longrightarrow \hat{f} \in L^2(\mathbf{R}^n)$ satisfaisant les points suivants :
 - lorsque $f \in L^1(\mathbf{R}^n) \cap L^2(\mathbf{R}^n)$, la fonction \hat{f} est la transformée de Fourier de la fonction f;
 - pour toute function $f \in L^2(\mathbf{R}^n)$, on a $||\hat{f}||_2 = ||f||_2$;
 - l'application est un isomorphisme;
 - pour toute fonction $f \in L^2(\mathbf{R}^n)$, en notant

$$\phi_A(\xi) := \int_{|x| \leqslant A} f(x)e^{-ix\xi} dx \quad \text{et} \quad \psi_A(\xi) := \int_{|x| \leqslant A} \hat{f}(x)e^{-ix\xi} dx$$

avec A > 0 et $t \in \mathbf{R}$, on a

$$\|\phi_A - f\|_2 \xrightarrow[A \to +\infty]{} 0$$
 et $\|\psi_A - \hat{f}\|_2 \xrightarrow[A \to +\infty]{} 0$.

3.2. Formule d'inversion de Fourier et une application

35. THÉORÈME. Soit $f \in \mathcal{S}(\mathbf{R}^n)$. Alors pour presque tout vecteur $x \in \mathbf{R}^n$, on a

$$f(x) = \frac{1}{2\pi} \int_{\mathbf{R}^n} e^{i\langle x,\xi \rangle} \hat{f}(\xi) \,d\xi.$$

- 36. Exemple. La fonction caractéristique de la loi de Cauchy de paramètre a>0 est la fonction $\xi\in\mathbf{R}\longmapsto e^{-a|\xi|}$.
- 37. COROLLAIRE. Soit $f \in L^1(\mathbf{R}^n)$ une fonction telle que $\hat{f} = 0$ sur \mathbf{R}^n . Alors f = 0 presque partout.
- 38. DÉFINITION. Soit I un intervalle de \mathbf{R} . Une fonction poids sur I est une fonction mesurable $\rho\colon I\longrightarrow \mathbf{R}_+^*$ telle que

$$\forall n \in \mathbf{N}, \qquad \int_{I} |x|^{n} \rho(x) \, \mathrm{d}x < +\infty.$$

L'ensemble $L^2(I, \rho)$ des fonctions de carré intégrable pour la mesure ρdx est muni du produit scalaire définit par l'égalité $\langle f, g \rangle = \int_I f \overline{g} \rho$.

- 39. Remarque. Grâce au procédé de Gram-Schmidt appliqué à la famille $(X^n)_{n \in \mathbb{N}}$, il existe une unique famille étagée orthogonale de polynômes unitaires, les polynômes orthogonaux.
- 40. Théorème. Soient $\rho: I \longrightarrow \mathbf{R}_+^*$ une fonction poids et $\alpha > 0$ un réel vérifiant

$$\int_{I} e^{\alpha|x|} \rho(x) \, \mathrm{d}x < +\infty.$$

Alors la famille des polynômes orthogonaux est une base hilbertienne de $L^2(I, \rho)$.

3.3. Deux applications : la formule sommatoire de Poisson et la résolution de l'équation de la chaleur

41. Théorème. Soient $F \in L^1(\mathbf{R}) \cap \mathscr{C}^0(\mathbf{R})$ une fonction intégrable et continue. On suppose qu'il existe deux constantes M > 0 et $\alpha > 1$ telles que

$$\forall x \in \mathbf{R}, \qquad |F(x)| \leqslant M(1+|x|)^{-\alpha}$$

et que

$$\sum_{n=-\infty}^{+\infty} |\hat{F}(n)| < +\infty.$$

Alors

$$\sum_{n=-\infty}^{+\infty} F(n) = \sum_{n=-\infty}^{+\infty} \hat{F}(n).$$

42. Application. Pour tout t > 0, on a

$$\sum_{n \in \mathbf{Z}} e^{-\pi n^2/t} = \sqrt{t} \sum_{n \in \mathbf{Z}} e^{-\pi n^2 t}.$$

- 43. REMARQUE. La fonction $t \mapsto \sum_{n \in \mathbb{Z}} e^{-\pi n^2/t}$ joue un rôle dans la résolution de l'équation de la chaleur (1) et elle est reliée à la fonction thêta de Jacobi.
- 44. DÉFINITION. Soit $f \colon \mathbf{R} \longrightarrow \mathbf{R}$ une fonction. L'équation de la chaleur est le problème de Cauchy

$$\begin{cases} \partial_t u(x,t) = \partial_{xx} u(x,t), & x \in \mathbf{R}, \ t > 0, \\ \lim_{t \to 0} u(x,t) = f(x) & x \in \mathbf{R}. \end{cases}$$
 (1)

- 45. PROPOSITION. On suppose que la fonction f est bornée et de classe \mathscr{C}^2 . Alors il existe une solution $u: \mathbf{R} \times \mathbf{R}_+^* \longrightarrow \mathbf{R}$ au problème (1).
- 46. Remarque. Il n'y pas unicité de la solution car la fonction v définie par l'égalité

$$v(x,t) = \begin{cases} xt^{-3/2}e^{-x^2/4t} & \text{si } t \neq 0, \\ 0 & \text{sinon.} \end{cases}$$

est solution de l'équation (1) avec f = 0 et n'est pas nulle.