Leçon 265. Exemples d'études et d'applications des fonctions usuelles et spéciales.

I. L'exponentielle complexe et les logarithmes

I.1. L'exponentielle : définition, premières propriétés et caractérisation

1. DÉFINITION. Le rayon de convergence de la série entière $\sum z^n/n!$ est infini. Sa fonction somme

exp:
$$\begin{vmatrix} \mathbf{C} \longrightarrow \mathbf{C}, \\ z \longmapsto 1 + z + \frac{z^2}{2} + \dots + \frac{z^n}{n!} + \dots \end{vmatrix}$$

est la fonction exponentielle complexe.

- 2. Proposition. Soient $a, b, z \in \mathbb{C}$ trois complexes. Alors
 - $-\exp(a+b) = \exp(a)\exp(b);$
 - $-\exp(z)\neq 0$;
 - $-\exp(z)^{-1} = \exp(-z);$
 - $-\overline{\exp(z)} = \exp(\overline{z});$
 - $|\exp(z)| = \exp(\operatorname{Re} z);$
 - $-|\exp(z)| = 1 \Leftrightarrow z \in i\mathbf{R}.$
- 3. PROPOSITION. On définit $\mathbf{U} \coloneqq \{z \in \mathbf{C} \mid |z| = 1\}$. Pour un complexe $z \in \mathbf{C}$, on a $e^{iz} \in \mathbf{U} \iff z \in \mathbf{R}$.
- 4. REMARQUE. La fonction exp: $(\mathbf{C}, +) \longrightarrow (\mathbf{C}^*, \times)$ réalise un morphisme de groupes.
- 5. NOTATION. On note $e := \exp(1)$ et, pour un complexe $z \in \mathbb{C}$, on s'autorisera la notation $e^z := \exp(z)$.
- 6. Proposition. La fonction exp: $\mathbb{C} \longrightarrow \mathbb{C}$ est entière et elle est sa propre dérivée.
- 7. Proposition. Pour un complexe $z \in \mathbb{C}$, on a

$$\left(1+\frac{z}{n}\right)^n \longrightarrow e^z.$$

- 8. Théorème. Soient $\Omega \subset \mathbf{C}$ un ouvert connexe et $f \colon \Omega \longrightarrow \mathbf{C}$ une fonction holomorphe. Alors les deux points suivants sont équivalents :
 - il existe deux complexes $a,b \in \mathbf{C}$ tels que $f(z) = a \exp(bz)$ pour tout $z \in \Omega$;
 - pour tout $z \in \Omega$, on a f'(z) = bf(z).
- 9. COROLLAIRE. Soient $\Omega \subset \mathbf{C}$ un ouvert connexe avec $0 \in \Omega$ et $f \colon \Omega \longrightarrow \mathbf{C}$ une fonction holomorphe. Alors les deux points suivants sont équivalents :
 - pour tous $z, w \in \Omega$ avec $z + w \in \Omega$, on a f(z + w) = f(z)f(w) et f(0) = 1.
 - $f = \exp \operatorname{sur} \Omega$
- 10. NOTATION. Pour un complexe $z \in \mathbf{C}$ et un réel a > 0, on note $z^a := e^{z \ln a}$.

I.2. Sa surjectivité et ses conséquences

- 11. Proposition. La fonction exp: $\mathbf{C} \longrightarrow \mathbf{C}^*$ est un difféomorphisme local en tout point. En particulier, son image $\exp(\mathbf{C})$ est un ouvert.
- 12. THÉORÈME. La fonction exp: $\mathbb{C} \longrightarrow \mathbb{C}^*$ est surjective.
- 13. COROLLAIRE. Elle n'est pas injective.
- 14. LEMME. Un sous-groupe additif de la droite ${\bf R}$ est soit dense dans ${\bf R}$, soit de la forme $a{\bf Z}$ avec $a\in {\bf R}$.

- 15. THÉORÈME. L'application $t \in \mathbf{R} \longmapsto e^{it}$ est un morphisme de groupes de $(\mathbf{R}, +)$ dans (\mathbf{U}, \times) . De plus, il existe un unique réel a > 0 tel que son noyau soit $a\mathbf{Z}$. On définit alors $\pi \coloneqq a/2 > 0$.
- 16. PROPOSITION. Le noyau du morphisme exp: $(\mathbf{C}, +) \longrightarrow (\mathbf{C}^*, \times)$ est $2i\pi \mathbf{Z}$. Par ailleurs, cette fonction est périodique $2i\pi$ -périodique.

I.3. Fonctions trigonométriques circulaires

17. DÉFINITION. Les fonctions sinus et cosinus sont les fonctions sin, cos: $\mathbf{C} \longrightarrow \mathbf{C}$ définies par les égalités

$$\sin(z) \coloneqq \frac{e^{iz} - e^{-iz}}{2i}$$
 et $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$, $z \in \mathbf{C}$.

18. Proposition. Ces dernières sont entières et vérifient $\sin' = \cos$ et $\cos' = -\sin$. Par ailleurs, pour tout complexe $z \in \mathbb{C}$, on a

$$\sin z = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1},$$

$$\cos z = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} z^{2n},$$

$$\cos z + i\sin z = z.$$

19. Proposition. Pour tous complexes $z, w \in \mathbb{C}$, on a

$$\sin(z+w) = \sin z \cos w + \cos w \sin z,$$

$$\cos(z+w) = \cos z \cos w - \sin z \sin w.$$

- 20. Théorème. Pour tout complexe $z \in \mathbb{C}$, on a
 - $-\cos z = 0 \Leftrightarrow z \in \pi/2 + \pi \mathbf{Z};$
 - $-\sin z=0 \Leftrightarrow z\in \pi \mathbf{Z}.$
- 21. COROLLAIRE. Les fonctions cos et sin sont 2π -périodique.

I.4. Les logarithmes complexes

22. DÉFINITION. Soit $X \subset \mathbf{C}^*$ une partie. Une détermination du logarithme sur X est une fonction $\ell \colon X \longrightarrow \mathbf{C}$ vérifiant

$$\forall z \in X, \qquad e^{\ell(z)} = z.$$

Une détermination de l'argument sur X est une fonction $\theta\colon X\longrightarrow \mathbf{R}$ vérifiant

$$\forall z \in X, \qquad |z| e^{i\theta(z)} = z.$$

23. DÉFINITION. Pour un complexe $z \in \mathbf{C}^*$, on note $\operatorname{Arg} z \in \mathbf{R}$ sont unique argument dans l'intervalle $]-\pi,\pi]$. La fonction $\operatorname{Arg}\colon \mathbf{C}^* \longrightarrow]-\pi,\pi]$ est la détermination principale de l'argument. La fonction

$$\text{Log}: z \in \mathbf{C}^* \longmapsto \ln|z| + i \operatorname{Arg} z$$

est la $d\acute{e}termination$ principale du logarithme.

24. Remarque. Les fonctions Arg et Log ne sont pas continues sur C*.

26. COROLLAIRE. Il n'existe pas de détermination continue de la puissance k-ième avec $k \ge 2$ sur \mathbb{C}^* .

27. Proposition. Soit $\Omega \subset \mathbf{C}^*$ un ouvert. Les déterminations continues du logarithme sur Ω sont les fonctions de la forme

$$z \in \Omega \longmapsto \ln|z| + i\theta(z)$$

pour une détermination continue θ de l'argument sur Ω

28. Théorème. La fonction Arg est de classe \mathscr{C}^{∞} sur $\mathbf{C} \setminus \mathbf{R}_{-}$ et la fonction Log est holomorphe sur $\mathbf{C} \setminus \mathbf{R}_{-}$.

29. Théorème. Soit $\Omega \subset \mathbf{C}^*$ un ouvert connexe. Alors

- toute détermination continue du logarithme sur Ω est un primitive de la fonction inverse $z \in \Omega \longmapsto 1/z$ sur Ω ;
- si la fonction inverse admet une primitive sur Ω , alors il existe un détermination continue du logarithme sur Ω .

30. Théorème (Cauchy homotopique). Soient $\Omega \subset \mathbf{C}$ un ouvert et $\gamma_1, \gamma_2 \colon [0,1] \longrightarrow \Omega$ deux lacets homotopes dans Ω . Pour tout fonction holomorphe $f \colon \Omega \longrightarrow \mathbf{C}$, on a

$$\int_{\gamma_1} f(z) \, \mathrm{d}z = \int_{\gamma_2} f(z) \, \mathrm{d}z.$$

31. COROLLAIRE. Soit $\Omega \subset \mathbf{C}^*$ un ouvert simplement connexe. Alors il existe une détermination holomorphe du logarithme sur Ω .

32. APPLICATION (théorème de Riemann). Tout ouvert simplement connexe $\Omega \subset \mathbf{C}$ avec $\Omega \neq \mathbf{C}$ est conformément équivalent au disque unité ouvert $\mathbf{D} \subset \mathbf{C}$.

II. La fonction gamma d'Euler

II.1. La définition et l'équation fonctionnelle

D1

33. DÉFINITION. Considérons le demi-plan $\Omega := \{\text{Re} > 0\} \subset \mathbf{C}$. Pour tout $z \in \Omega$, la fonction $t > 0 \longmapsto t^{z-1}e^{-t}$ est intégrable. La fonction gamma d'Euler est la fonction

$$\Gamma : \left| \begin{array}{l} \Omega \longrightarrow \mathbf{R}, \\ z \longmapsto \int_0^{+\infty} t^{z-1} e^{-t} \, \mathrm{d}t. \end{array} \right|$$

34. Proposition. La fonction Γ est holomorphe sur l'ouvert Ω .

35. Proposition. Pour tout complexe $z \in \Omega$, on a $\Gamma(z+1) = z\Gamma(z)$.

36. COROLLAIRE. Pour tout entier $n \ge 1$, on a $(n-1)! = \Gamma(n)$.

37. APPLICATION. La surface de la sphère $\mathbf{S}^{n-1} \subset \mathbf{R}^n$ vaut $2\pi^{n/2}/\Gamma(n/2)$ et le voulme de la boule $\mathbf{B}^n \subset \mathbf{R}^n$ vaut $\pi^{n/2}/\Gamma(n/2+1)$.

38. Théorème (formule de Stirling). Lorsque $x \longrightarrow +\infty$, on a

$$\Gamma(x) \simeq x^x e^{-x} \sqrt{2\pi x}$$
.

II.2. Prolongement en une fonction méromorphe

39. Théorème. Pour tout complexe $z \in \Omega$, on a

$$\frac{n!n^z}{z(z+1)\cdots(z+n)}\longrightarrow \Gamma(z).$$

40. NOTATION. Notons $\gamma > 0$ la limite de la suite $(1 + \cdots + 1/n - \ln n)_{n \in \mathbb{N}^*}$.

41. COROLLAIRE (formule de Weierstrass). Pour tout complexe $z \in \Omega$, le nombre $\Gamma(z)$ est non nul d'inverse

$$\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{k=0}^{+\infty} \left(1 + \frac{z}{k}\right)^{-z/k}.$$

42. Théorème. La fonction Γ se prolonge en une fonction méromorphe sur \mathbf{C} admettant des pôles simples en les entiers négatifs ou nul et dont l'inverse est entière.

II.3. La formule des compléments, deux caractérisations et leurs conséquences

43. Proposition. Pour tout complexe $z \in \Omega$ avec $1 - z \in \Omega$, on a

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}.$$

44. Application. On trouve $\Gamma(1/2) = \sqrt{\pi}$ et

$$\int_{\mathbf{R}} e^{-t^2} \, \mathrm{d}t = \sqrt{\pi}.$$

45. Théorème. Soit $f: \Omega \longrightarrow \mathbf{C}$ une fonction holomorphe vérifiant les points :

- -f(1)=1;
- f(z+1) = zf(z) pour tout $z \in \Omega$;
- elle est bornée sur la bande $\{1 \leqslant \text{Re} < 2\}$.

Alors les fonction f et Γ sont égales.

46. COROLLAIRE. Pour tout complexe $z \in \Omega$ et tout entier $k \ge 2$, on a

$$\prod_{i=0}^{k-1} \Gamma\left(z + \frac{i}{k}\right) = (2\pi)^{(k-1)/2} n^{1/2 - kx} \Gamma(kz).$$

47. Théorème. Soit $u:]0, +\infty[\longrightarrow]0, +\infty[$ une fonction vérifiant les points :

- -elle est logarithmiquement convexe, c'est-à-dire la fonction l
n $\circ u$ est convexe;
- -u(1)=1;
- u(x+1) = xu(x) pour tout x > 0.

Alors la fonction u est égale à la restriction $\Gamma|_{]0,+\infty[}$.

48. COROLLAIRE (formule de duplication). Pour tout complexe $z \in \Omega$, on a

$$\Gamma(z) = \frac{2^{z-1}}{\sqrt{\pi}} \Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{z+1}{2}\right).$$

Éric Amar et Étienne Matheron. Analyse complexe. Cassini, 2004.

^[2] Hervé Queffélec et Claude Zuily. Analyse pour l'agrégation. 5e édition. Dunod, 2020.

Walter Rudin. Analyse réelle et complexe. 3e édition. Dunod, 1998.

^[4] Patrice Tauvel. Analyse complexe pour la licence 3. Dunod, 2006.