Géométrie semi-riemannienne Éric Loubeau

Master 2 de mathématiques fondamentales \cdot Université de Rennes Notes prises par Téofil ADAMSKI (version du 5 avril 2023)

Sommaire

1	Differentiable manifolds	
	1.1 Differentiable manifolds	1
	1.2 Tangent spaces and tangent bundle	1
	1.3 Tensors	3
2	Semi-riemannian manifolds	
	2.1 First definitions	7
	2.2 Connection and Levi-Civita connection	8
	2.3 Curvature and Ricci tensor	9
	2.4 Killing vector field	2
3	Geodesics	
	3.1 First definitions	7
4	Examples	

5 Calculus of variations

Chapitre 1 Differentiable manifolds

1.1	Differentiable manifolds	1
1.2	Tangent spaces and tangent bundle	1
1.3	Tensors	3

1.1. Differentiable manifolds

Let S be a topological connected Hausdorff and paracompact space. A *chart* is a homeomorphism ξ from and open subset of S in a open subset $\eta(U) \subset \mathbf{R}^n$. It can be written

$$\xi(P) = (x^1(p), \dots, x^n(p)), \qquad \forall p \in U$$

where the maps x^i are called the *coordinates functions* of ξ and we will denote $\xi = (x^1, \ldots, x^n)$. Two charts ξ and η of dimension *n* intersect in a smooth manner if the maps $\xi \circ \eta^{-1}$ and $\eta \circ \xi^{-1}$ are of classe \mathscr{C}^{∞} .

An *atlas* is a collection of charts of dimension n such that

- for all point $p \in S$, there exist an open subset U such that $p \in U$;
- two charts intersect in a smooth manner.

An atlas is *complete* if it contains all the charts of S which intersect in a smooth manner. Any atlas admits a completion.

Définition 1.1. A differentiable manifold is a topological space equipped with a complete atlas.

Exemples. – The euclidean space is a differentiable manifold.

– The sphere $\mathbf{S}^n \subset \mathbf{R}^{n+1}$ is a differentiable manifold of dimension n.

- A cartesian product of differentiable manifolds is also a differentiable manifold.

Définition 1.2. Let M be a differentiable manifold. A function $f: M \longrightarrow \mathbf{R}$ is of class \mathscr{C}^{∞} if, for any chart (U, η) , the maps

$$f \circ \eta^{-1} \colon \eta^{-1}(U) \longrightarrow \mathbf{R}$$

is of class \mathscr{C}^{∞} .

The sum, product and inverse are of class $\mathscr{C}^\infty.$

Définition 1.3. Let M and N be two differentiable manifolds. A map $\phi: M \longrightarrow N$ is of class \mathscr{C}^{∞} if, for any charts (U,ξ) of M and (V,η) of N, the map

$$\eta \circ \phi \circ \xi^{-1} \colon \xi(U) \longrightarrow \eta(V).$$

is of class \mathscr{C}^{∞} .

1.2. Tangent spaces and tangent bundle

Définition 1.4. Let $p \in M$ a point. Let F(M) be the space of functions of class \mathscr{C}^{∞} on M. A *tangent vector* at the point p is a **R**-linear map $v: F(M) \longrightarrow \mathbf{R}$ satisfying the Leibniz rules

$$v(fg) = f(p)v(g) + g(p)v(f).$$

The space of all tangent vectors at the point p is the tangent space at the point p, denoted $T_p M$.

Let (U,ξ) a chart, $p \in U$ a point and $f \in F(M)$ a function. We denote $\eta = (x^1, \ldots, x^m)$ and

$$\frac{\partial f}{\partial x_i}(p) \coloneqq \frac{\partial (f \circ \eta^{-1})}{\partial u^i}(\eta(p)).$$

where the notation u^i are the coordinates on \mathbf{R}^m . The map

$$\partial_i|_p \coloneqq \frac{\partial}{\partial x_i}\Big|_p : F(M) \longrightarrow \mathbf{R}$$

are a tangent vector at the point p. The vectors $\partial_i|_p$ form a basis of $T_p M$.

Définition 1.5. Let $\phi: M \longrightarrow N$ be a map of class \mathscr{C}^{∞} . For all point $p \in M$, we define the **R**-linear map

$$d\phi_p \colon \mathrm{T}_p M \longrightarrow \mathrm{T}_{\phi(p)} N$$

by the equality

$$d\phi_p(v) = v_\phi \in \mathcal{T}_{\phi(p)}N$$

where

$$v_{\phi}(g) \coloneqq v(g \circ \phi)$$

With coordinate (x^1, \ldots, x^m) on M and (y^1, \ldots, y^n) , we have

$$d\phi(p)(\partial_j|_p) = \sum_{i=1}^n \frac{\partial(y^i \circ \phi)}{\partial x^j}(p) \left. \frac{\partial}{\partial y^i} \right|_{\phi(p)}.$$

Remarque. If the maps $\phi: M \longrightarrow N$ and $\psi: N \longrightarrow P$ are smooth, then the composition $\psi \circ \phi$ is also a smooth map.

Définition 1.6. A vector field is a map V which send each point $p \in M$ on a tangent vector $V_p \in T_p M$.

If
$$f \in F(M)$$
, we denote $V(f)(p) \coloneqq V_p(f)$.

Définition 1.7. If V(f) is of class \mathscr{C}^{∞} for all $f \in F(M)$, then V is of class \mathscr{C}^{∞} .

The sum of two vector fields is a vector field. The multiplication of a vector field by a function is a vector field. The *bracket* of two vector fields V and W is defined by

$$[V,W]_p(f) \coloneqq V_p(W(f)) - W_p(V(f)).$$

It is skew-symmetric **R**-bilinear. It satisfies the Jacobi identity

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

We have

$$[fX, gY] = fg[X, Y] + f(X(g))Y - g(Y(f))X.$$

Exemple. We have $[\partial_i, \partial_j] = 0$.

Définition 1.8. A differentiable manifold P is a *sub-manifold* of M if

 $- P \subset M;$

- the injection map $j: P \longrightarrow M$ is a map of class \mathscr{C}^{∞} ;
- it differential $dj_p: T_p P \longrightarrow T_{j(p)} M$ is injective for all $p \in P$.

Théorème 1.9 (Whitney). Let M be a \mathscr{C}^{∞} -differentiable manifold of dimension n. Then there exists an immersion $M \longrightarrow \mathbf{R}^{2n}$.

The tangent bundle of M is $TM := \bigsqcup_{p \in M} T_p M$. With $TM = \{(p, v) \mid p \in M, v \in T_p M\}$, we have a natural map $\pi : TM \longrightarrow M$ which satisfies $\pi^{-1}(p) = T_p M$. We can show that the tangent bundle is a manifold of dimension 2n. Indeed, let be (U, ξ) a chart on M with $\xi = (x^1, \ldots, x^n)$. Let $v \in T_p M$. We can write

$$v = \sum v^i \left. \frac{\partial}{\partial x^i} \right|_p$$

with $v^i \in \mathbf{R}$. We consider

$$\tilde{\eta} \colon \begin{vmatrix} \pi^{-1}(U) \subset \mathrm{T}M \longrightarrow \mathbf{R}^{2n}, \\ (p,u) \longmapsto (x^1(\pi(p,u)), \dots, x^n(\pi(p,u)), v^1, \dots, v^n). \end{vmatrix}$$

where $v^i = v(x^i) =: \dot{x}^i(u)$. This defines a atlas on TM. If (u^1, \ldots, u^{2n}) are the coordinates on \mathbb{R}^{2n} , the transition functions are given by

$$u^{i}\tilde{\xi} \circ \tilde{\eta}^{-1} = x^{i} \circ \pi \circ \tilde{\eta}^{-1}(a,b) = x^{i}\eta^{-1}(a),$$
$$u^{i}\tilde{\xi} \circ \tilde{\eta}^{-1} = \dot{x}^{i} \circ \tilde{\eta}^{-1}(a,b) = \sum b^{k}\frac{\partial x^{i}}{\partial y^{k}}(\eta^{-1}(a))$$

So the map $\tilde{\xi} \circ \tilde{\eta}^{-1}$ are of class \mathscr{C}^{∞} .

Remarque. A vector field $X: M \longrightarrow TM$ is a map of class \mathscr{C}^{∞} such that $\pi \circ X = \mathrm{Id}_M$.

Remarque. In general, we have $TM \neq M \times \mathbb{R}^n$. This is the case for \mathbb{S}^3 .

Exemple. We consider the sphere \mathbf{S}^2 . It is a manifold of dimension 2. We want to calculate it tangent space at a point $p \in \mathbf{S}^2$. Let $\gamma:]-\varepsilon, \varepsilon[\longrightarrow \mathbf{S}^2$ be a curve of class \mathscr{C}^{∞} on \mathbf{S}^2 with $\gamma(0) = p$. It acts on functions on \mathbf{S}^2 . For a function $f: \mathbf{S}^2 \longrightarrow \mathbf{R}$, we denote

$$\dot{\gamma}(0) \cdot f \coloneqq \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} (f \circ \gamma)(t)$$

We have

$$\left. \frac{\mathrm{d}\gamma}{\mathrm{d}t} \right|_{t=0} = \dot{\gamma}(0) \in \mathrm{T}_p \mathbf{S}^2$$

and all tangent vector can be obtained this way. As $|\gamma| = 1$, we find

$$\frac{\mathrm{d}}{\mathrm{d}t}|\gamma(t)|^2 = 0 = 2\langle p, \dot{\gamma}(0) \rangle.$$

Thus we conclude

$$\mathbf{T}_p \mathbf{S}^2 = \{ X \in \mathbf{R}^3 \mid \langle X, p \rangle = 0 \}.$$

Exemples. Open subsets of \mathbf{R}^n are differentiable manifolds. The half-plane $\mathbf{H}^2 \coloneqq \mathbf{R} \times \mathbf{R}^*_+$ has the tangent space $T_p \mathbf{H}^2 = \mathbf{R}^2$ and so its tangle bundle is $T\mathbf{H}^2 = \mathbf{H}^2 \times \mathbf{R}^2$.

Exemples. – The image of the map

$$\begin{vmatrix}]-1,1[\longrightarrow \mathbf{R}^{2},\\ t\longmapsto (t,|t|) \end{aligned}$$

is a differentiable manifold but not a submanifold of \mathbf{R}^2 .

- The map

$$\begin{vmatrix} \mathbf{R} \longrightarrow \mathbf{R}^2, \\ t \longmapsto (t^3, t^2) \end{vmatrix}$$

is differentiable but not an immersion.

– The map

$$\begin{vmatrix} \mathbf{R} \longrightarrow \mathbf{R}^2, \\ t \longmapsto (t^3 - 4t, t^2 - 4) \end{vmatrix}$$

- is differentiable and an immersion, but there is a self-intersection sot it is not an embedding.
- The map $t \mapsto (t, \sin(1/t))$ is an immersion with no self-intersecting point, but it is not an embedding.
- The cone $\{x^2 + y^2 z^2 = 0\}$ is not a submanifold of \mathbb{R}^3 for connectivity reasons.

1.3. Tensors

Let V be a module over a ring K.

Définition 1.10. Let $r, s \in \mathbf{N}$ be integers with rs > 0. A *tensor of type* (r, s) is a K-multilinear function

$$(V^*)^r \times V^s \longrightarrow K.$$

We denote $T^{r,s}(V)$ the set of tensors of type (r, s).

A tensor field is a tensor on the ring $\mathscr{X}(M)$ which denotes the set of vectors field on a differentiable manifold M. The set $\mathscr{X}(M)$ is a module on the ring F(M) of functions on M. So a tensor field of type (r, s) is a F(M)-linear map

$$A\colon \mathscr{X}^*(M)^r \times \mathscr{X}(M)^s \longrightarrow \mathcal{F}(M).$$

Exemple. The map

$$C \colon \begin{vmatrix} \mathscr{X}^*(M) \times \mathscr{X}(M) \longrightarrow \mathcal{F}(M), \\ (\theta, X) \longmapsto \theta(X) \end{vmatrix}$$

is a tensor.

Counter-example. Let $\omega \in \mathscr{X}^*(M)$ a linear form. The map

$$F: \begin{array}{c} \mathscr{X}(M) \times \mathscr{X}(M) \longrightarrow \mathcal{F}(M), \\ (X,Y) \longmapsto X(\omega(Y)) \end{array}$$

is not a tensor field.

Remarque. When $A \in T^{r,s}(V)$ and $B \in T^{r',s'}(V)$, we can define the tensor $A \times B \in T^{r+r',s+s'}(V)$ with the equality

 $A \otimes B(\theta^1, \dots, \theta^{r+r'}, X_1, \dots, X_{s+s'}) = A(\theta^1, \dots, \theta^r, X_1, \dots, X_s) A(\theta^{r+1}, \dots, \theta^{r+r'}, X_{s+1}, \dots, X_{s+s'}).$

Proposition 1.11. Let $p \in M$ and $A \in T^{r,s}(M)$. Let $\overline{\theta}^i$ and θ^i be 1-forms which agree on p. Let \overline{X}_i and X_i be vector field which agree on p. Then

$$A(\overline{\theta}^1,\ldots,\overline{\theta}^r,\overline{X}_1,\ldots,\overline{X}_s)(p) = A(\theta^1,\ldots,\theta^r,X_1,\ldots,X_s)(p)$$

Thus we can define the map

$$A_p \colon (\mathbf{T}_p^* M)^r \times (\mathbf{T}_p M)^s \longrightarrow \mathbf{R}$$

Démonstration. We show that, if $\theta^{i_0}(p) = 0$ or $X_{i_0}(p) = 0$, then $A(\theta^1, \ldots, \theta^r, X_1, \ldots, X_s)(p) = 0$. Let $(U, (x^1, \ldots, x^n))$ be a chart. Then we can write $X_{j_0} = \sum X^i \partial_i$. Let f be a bump function on U with f(p) = 1. We have $X_{j_0}(p) = 0 \Leftrightarrow X^i(p) = 0, \forall i$ and $f^2 X_{j_0}$ is a vector field and we can write $f^2 X_{j_0} = \sum f X^i(f\partial_i)$. So

$$f^{2}A(\theta^{1},\ldots,\theta^{r},X_{1},\ldots,X_{s}) = A(\theta^{1},\ldots,\theta^{r},X_{1},\ldots,f^{2}X_{j_{0}},\ldots,X_{s})$$
$$= \sum_{i} fx^{I}A(\theta_{1},\ldots,\theta^{r},X_{1},\ldots,f\partial_{i},\ldots,X^{s})$$

and $A(\theta^1, ..., \theta^r, X_1, ..., X_s)(p) = 0.$

Let $(U, (x^1, \ldots, x^n))$ be a map. Let $p \in U$. On U, we denote

$$A^{i_1,\ldots,i_s}_{j_1,\ldots,j_s} \coloneqq A(\mathrm{d} x^{i_1},\ldots,\mathrm{d} x^{i_r},\partial j_i,\ldots,\partial j_s)$$

and we have

$$A = \sum A_{j_1,\dots,j_s}^{i_1,\dots,i_s} \partial j_i \otimes \dots \otimes \partial j_s \otimes \mathrm{d} x^{i_1} \otimes \dots \otimes \mathrm{d} x^{i_r}$$

The contraction of A on the indices i and j is the tensor field $C_j^i A$ of type (r-1, s-1) which is the composition of C and the tensor

$$(\theta, X) \longmapsto A(\theta^1, \dots, \theta, \dots, \theta^r, X_1, \dots, X, \dots, X_s).$$

The component of $C_j^i A$ are $A_{j_1,\ldots,m,\ldots,j_s}^{i_1,\ldots,m,\ldots,i_r}$ with $m \in \{1,\ldots,n\}$.

Définition 1.12. Let $\phi: M \longrightarrow N$ a differentiable map. If $A \in T^{0,s}(N)$, we set

 $\phi^* A(X_1, \dots, X_s) \coloneqq A(d\phi(X_1), \dots, d\phi(X_s)).$

The tensor $\phi^* A \in T^{0,s}(M)$ is the *pull-back of* A by ϕ .

Définition 1.13. A derivation of tensor is a **R**-linear map

$$D: \mathrm{T}^{r,s}(M) \longrightarrow \mathrm{T}^{r,s}(M)$$

such that

$$D(A \otimes B) = DA \otimes B + A \otimes DB$$

and

$$D(CA) = C(DA).$$

For a function $f \in F(M) \subset T^{0,0}(M)$, we set $f \otimes A = fA$ and we have D(fA) = fDA + (Df)A. The derivation D is a derivation of functions so there exists a $V \in \mathscr{X}(M)$ such that Df = V(f). The chain rule becomes

$$D(A(\theta^1, \dots, \theta^r, X_1, \dots, X_s)) = (DA)(\theta^1, \dots, \theta^r, X_1, \dots, X_s)$$

+
$$\sum_{i=1}^r A((\theta^1, \dots, D\theta^i, \dots, \theta^r, X_1, \dots, X_s)) + \sum_{i=1}^s (\theta^1, \dots, \theta^r, X_1, \dots, DX_j, \dots, X_s).$$

Théorème 1.14. Given a vector field V and an **R**-linear map $\delta \colon \mathscr{X}(M) \longrightarrow \mathscr{X}(M)$ such that

$$\delta(fX) = V(f)W + f(\delta X)$$

there exists a unique derivation of tensors which equals to δ on $\mathscr{X}(M)$ and V on F(M).

Définition 1.15. Let $V \in \mathscr{X}(M)$. Then we set the derivation L_V as

$$L_V(f) \coloneqq V(f)$$
 et $L_V(X) \coloneqq [V, X]$

for all $f \in F(M)$ and $X \in \mathscr{X}(M)$. It is called the *Lie's derivation*.

Définition 1.16. Let V be a vector space. The *index* of a bilinear form b is the dimension of the largest subspace $W \subset V$ such that the restriction $b|_{W \times W}$ is negative definite. A vector $v \in V$ is *null* or *isotropic* if $v \neq 0$ and b(v, v) = 0.

Lemme 1.17. Let V and W be two linear spaces of the same dimension. Then they are equipped with inner products with the same indices if and only if the exists a linear isometry $V \longrightarrow W$.

Chapitre 2 Semi-riemannian manifolds

2.1	First definitions		. '	7
2.2	Connection and Levi-Civita connection		. 8	8
2.3	Curvature and Ricci tensor		. 9	9
2.4	Killing vector field	•	. 13	2

2.1. First definitions

Définition 2.1. A metric on a differentiable manifold M is a tensor field g on M of type (0, 2) which is symmetric, non-degenerate and with a constant index. A semi-riemannian manifold is a manifold M equipped with a metric g.

In general, two different metrics on a same manifold M gives two different semi-riemannian structures on M. If the index is zero, then we say that the semi-riemannian manifold (M,g) is riemannian. If the index is one, then we will call it *lorentzian*.

In local coordinates $(U, (x^1, \ldots, x^n))$, we can write $g = \sum_{i,j} g_{i,j} dx^i \otimes dx^j$ with $g_{i,j} = g(\partial i, \partial j)$. The matrix $(g_{i,j})$ is invertible, the inverse will be denoted $(g^{i,j})$.

Exemple. Let $\nu \leq n$ be a natural integer. On the space \mathbf{R}^n , we have the semi-riemannian structure \mathbf{R}^n_{ν} with the metric

$$\langle u, v \rangle = -\sum_{i=1}^{\nu} u^i w^i + \sum_{i=\nu+1}^n v^i w^i.$$

Définition 2.2. Let $p \in M$. Let (M, g) be a semi-riemannian manifold. A tangent vector $v \in T_pM$ is

- space-like if v = 0 or g(v, v) = 0;

- null if $v \neq 0$ and g(v, v) = 0;
- time-like if q(u, u) < 0.

Null vectors form the *null cone*.

If $P \subset M$ is a submanifold and M is equipped with a riemannian metric g, the P is a riemannian manifold. For example, the sphere \mathbf{S}^2 admits a riemannian metric. But this is not always true for semi-riemannian metrics.

Lemme 2.3. Let (M, g_M) and (N, g_N) two semi-riemannian manifolds. Let $\pi: M \times N \longrightarrow M$ and $\sigma: M \times N \longrightarrow N$ the two projections. Then the map $g \coloneqq \pi^* g_N + \sigma^* g_N$ is a semi-riemannian metric on $M \times N$.

Définition 2.4. An *isometry* between two semi-riemannian manifolds (M, g) and (N, h) is a diffeomorphism $\phi: M \longrightarrow N$ which preserves the metrics, that is $\phi^*g = h$ or

$$\forall p \in M, \ \forall u, w \in \mathbf{T}_p M, \qquad h_{\phi(p)}(d\phi_p(u), d\phi_p(v)) = g_p(u, v).$$

Exemple. Let (u^1, \ldots, u^n) be the natural coordinates on \mathbf{R}^n_{ν} . Let V and W two vector fields on \mathbf{R}^n . We denote $W = \sum W^i \partial_i$. We define $D_V W \coloneqq dW(V) = \sum V(W^i) \partial_i$. This is the *covariant derivative* of W with respect to V.

2.2. Connection and Levi-Civita connection

Définition 2.5. A connection on a manifold M is a map

$$D: \begin{array}{c} \mathscr{X}(M) \times \mathscr{X}(M) \longrightarrow \mathscr{X}(M) \\ (X,Y) \longmapsto D_X Y \end{array}$$

such that

$$- D_V W$$
 is $F(M)$ -linear in V ;

- $D_V W$ is **R**-linear in W;
- $D_V(fW) = V(f)W + fD_VW.$

Proposition 2.6. Let (M, g) be a semi-riemannian manifold. Let $V \in \mathscr{X}(M)$ a vector field. Let V^* be the 1-form defined by

$$V^*(X) \coloneqq g(V, X).$$

Then the map $V \mapsto V^*$ is a F(M)-linear isomorphism.

Exemples. – We take the sphere \mathbf{S}^2 . For a point $p \in \mathbf{S}^2$ and two tangent vectors $X, Y \in \mathbf{T}_p \mathbf{S}^2$, we can define

$$g_p(X,Y) \coloneqq \langle X,Y \rangle$$

where the notation $\langle \cdot, \cdot \rangle$ is the standard inner product on \mathbf{R}^3 . This gives a riemannian metric on \mathbf{S}^2 . If we replace the inner product $\langle \cdot, \cdot \rangle$ by another semi-riemannian metric on \mathbf{R}^3 , then this metric is no longer semi-riemannian in general.

– If g is a riemannian metric, then a another riemannian metric is given by

$$\tilde{g}_p(X,Y) \coloneqq e^{f(p)}g_p(x,y)$$

for a smooth function $f \in \mathscr{C}^{\infty}(M, \mathbf{R})$.

– There exists three vector fields E_i on \mathbf{S}^3 which form a orthonormal family where the semiriemannian is the same as the first example. Then we can define a new semi-riemannian metric by

$$\circ \langle E_i, E_j \rangle = 0 \text{ for all } i \neq j;$$

•
$$|E_1|^2 = -1$$
 and $|E_2|^2 = |E_3|^2 = 1$.

– On the half-plane \mathbf{H}^2 , we can define the metric

$$g \coloneqq \frac{\mathrm{d}x^2 + \mathrm{d}y^2}{y^2}.$$

Question. When can we equip M with a semi-riemannian metric? It is not always the case for a semi-riemannian metric with strictly positive index. But it is always the cases for a riemannian metric. There is two ways to do that :

– by using the Withney's theorem : the exists an immersion $\iota: M \longrightarrow \mathbf{R}^N$ for a large enough integer N and we take the pullback of the euclidean matric on \mathbf{R}^N , that is

$$g_p(X,Y) \coloneqq \langle d\iota_p(X), d\iota_p(Y) \rangle$$

- if (U_i, x^i) are an atlas of M, we define

$$g_p \coloneqq \sum_i \alpha_i x_i^* \langle \cdot, \cdot \rangle_{\mathbf{R}^n}.$$

Théorème 2.7. Let (M, g) be a semi-riemannian manifold. Then there exists a unique connection D such that, for all vector fields V and W, we have

$$- [V,W] = D_V W - D_W V;$$

- $Xg(V,W) = g(D_X V,W) + g(V,D_X W)$

Moreover, the connection D is characterized by the Koszul formula

$$2g(D_V W, X) = V(g(X, W)) + W(g(X, V)) - Xg(V, W) - g(V, [W, X]) + g(W, [X, V]) + g(X, [V, W]).$$

It is called the Levi-Civita connection.

Démonstration. Let D be a connection satisfying these two points. In the right-hand side of the Koszul formula, using the two points, we obtain $2g(D_V W, X)$. This proves the uniqueness because of the one-to-one correspondence between vector fields and 1-forms.

Let proves the existence. Let F(V, W, X) the right-hand side of the Koszul formula. Then if we take two vector fields V and W, then the map $F(V, W, \cdot): \mathscr{X}(M) \longrightarrow \mathbf{R}$ is F(M)-linear. So it is a 1-form. Thus there exists a unique vector field $D_V W$ such that

$$g(D_V W, X) = F(V, W, X), \quad \forall X \in \mathscr{X}(M).$$

This show the Koszul formula and that the map D is a connection. With this formula, we can prove the two points.

Notation. We will write ∇ for the Levi-Civita connection. With this notation and $g(\cdot, \cdot) = \langle \cdot, \cdot \rangle$, the two points of the theorem are

$$\begin{aligned} X\langle Y, Z \rangle &= \langle \nabla_X Z, Y \rangle + \langle \nabla_X Y, Z \rangle, \\ [X, Y] &= \nabla_X Y - \nabla_Y X. \end{aligned}$$

Définition 2.8. The *Christoffel symbols* for the chart (U, x^i) are the functions on U given by

$$D_{\partial_i}(\partial_j) = \sum_{k=1}^n \Gamma_{i,j}^k \partial_k.$$

Recall that $[\partial_i, \partial_j] = 0 = D_{\partial_i}(\partial_j) - D_{\partial_j}(\partial_i)$ by the Schwarz theorem, so $\Gamma_{i,j}^k = \Gamma_{j,i}^k$. Moreover, if $W = \sum W^j \partial_j$ on U, then

$$\begin{split} D_{\partial_i}(W) &= \sum_j (\partial_i(W^j)\partial_j + W^j \sum_k \Gamma^k_{i,j}\partial_k) \\ &= \sum_k (\partial_i(W^j) + \sum_j W^j \Gamma^k_{i,j})\partial_k \end{split}$$

By Koszul formula, we have

$$\Gamma_{i,j}^k = \frac{1}{2} \sum_{\ell} g^{k,\ell} \left(\frac{\partial g_{\ell,j}}{\partial x^i} + \frac{\partial g_{\ell,i}}{\partial x^j} - \frac{\partial g_{i,j}}{\partial x^\ell} \right).$$

Exemple. On \mathbf{R}_{ν}^{n} , we have $\Gamma_{i,j}^{k} = 0$.

2.3. Curvature and Ricci tensor

Definition-proposition 2.9. Let (M, g) a semi-riemannian manifold and ∇ its Levi-Civita connection. The the map

$$R: \begin{array}{c} \mathscr{X}(M) \times \mathscr{X}(M) \times \mathscr{X}(M) \longrightarrow \mathscr{X}(M) \\ (X, Y, Z) \longmapsto R(X, Y)Z \coloneqq \nabla_{[X, Y]}Z - \nabla_X \nabla_Y Z + \nabla_Y \nabla_X Z \end{array}$$

is a tensor field of type (1,3), called the *riemannian curvature*.

There is a version of type (0, 4) given by

$$R(X, Y, Z, W) = g(R(X, Y)Z, W).$$

 \diamond

 \diamond

Démonstration. We need to check that R(fX, Y)Z = fR(X, Y)Z and R(X, Y)(fZ) = fR(X, Y)Z. We have [fX, Y] = fXY - Y(f)X - fYX and

$$\nabla_{[fX,Y]}Z = f\nabla_X\nabla_YZ$$

which prove the formula.

Proposition 2.10. We have the following properties :

1. R(X, Y)Z = -R(X, Y)Z;2. g(R(X,Y)Z,W) = -g(R(X,Y)W,Z);3. R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0;4. g(R(X, Y)Z, W) = g(R(Z, W)X, Y).

2. With $q(\cdot, \cdot) = \langle \cdot, \cdot \rangle$, one has Démonstration.

$$g(R(X,Y)Z,Z) = \langle \nabla_{[X,Y]}Z - \nabla_X \nabla_Y Z + \nabla_Y \nabla_X Z, Z \rangle$$

$$= \langle \nabla_{[X,Y]}Z,Z \rangle - \langle \nabla_X \nabla_Y Z,Z \rangle + \langle \nabla_Y \nabla_X Z,Z \rangle$$

$$= [X,Y] \left(\frac{\langle Z,Z \rangle}{Z} \right) - X \langle \nabla_Y Z,Z \rangle + \langle \nabla_Y Z, \nabla_X Z \rangle + Y \langle \nabla_X Z,Z \rangle - \langle \nabla_X Z, \nabla_Y Z \rangle$$

$$= [X,Y] \left(\frac{\langle Z,Z \rangle}{Z} \right) - XY \left(\frac{\langle Z,Z \rangle}{Z} \right) + Y \left(X \left(\frac{\langle Z,Z \rangle}{Z} \right) \right) = 0.$$

So $g(R(X,Y)(Z+W),Z+W) = 0$ and we conclure by bilinearity.

So g(R(X,Y)(Z+W), Z+W) = 0 and we conclure by bilinearity.

Remarque. The map R is a tensor. For $X, Y, Z \in \mathscr{X}(M)$ and $p \in M$, the quantity $(R(X, Y)Z)_p$ only depend on the values X(p), Y(p) and Z(p). So we can define $R_p(u, v)w$ for $u, v, w \in T_pM$.

Proposition 2.11. Let X, Y and Z be three vector fields. Then

$$(\nabla_Z R)(X,Y) + (\nabla_X R)(Y,Z) + (\nabla_Y R)(Z,X) = 0.$$

Remarque. We have

$$(\nabla_X R)(Y,Z)W = \nabla_X (R(Y,Z)W) - R(\nabla_X Y,Z)W - R(Y,\nabla_X Z)W - R(Y,Z)\nabla_X W$$

Moreover, we have

$$(\nabla_X g)(Y, Z) = X(g(Y, Z)) - g(\nabla_X Y, Z) - g(X, \nabla_X Z) = 0$$

Démonstration. We prove the identity on a basis. We choose $X = \partial_i$, $Y = \partial_j$ and $Z = \partial_k$. So

$$(\nabla_Z R)(X,Y)W = [\nabla_Z, R(X,Y)]W - R(\nabla_Z X,Y)W - R(X,\nabla_Z Y)W$$

and then

$$\begin{split} (*) &= (\nabla_Z R)(X,Y) + (\nabla_X R)(Y,Z) + (\nabla_Y R)(Z,X) \\ &= [\nabla_Z, R(X,Y)]W + [\nabla_X, R(Y,Z)]W + [\nabla_Y, R(Z,X)] \\ &\quad - R(\nabla_Z X,Y)W - R(X,\nabla_Z Y)W \\ &\quad - R(\nabla_X Y,Z)W - R(Y,\nabla_X Z)W \\ &\quad - R(\nabla_Y Z,X)W - R(Z,\nabla_Y X)W \\ &= [\nabla_Z, R(X,Y)]W + [\nabla_X, R(Y,Z)]W + [\nabla_Y, R(Z,X)] \\ &\quad + R([X,Z],Y)W + R([Z,Y],X)W + R([Y,X],Z)W. \end{split}$$

But

$$[\nabla_Z, R(X, Y)] = [\nabla_Z, [\nabla_X, \nabla_Y]] - [\nabla_Z, \nabla_{[X, Y]}]$$

where the last term is null on U and so

$$(*) = [\nabla_Z, [\nabla_X, \nabla_Y]] = [\nabla_X, [\nabla_Y, \nabla_Z]] + [\nabla_Y, [\nabla_Z, \nabla_Y]] = 0.$$

Let $p \in M$ be a point and Π be a plane in T_pM . For two tangent vectors $v, w \in T_pM$ not null and not colinear, we define

$$Q(v,w) \coloneqq \langle v,v \rangle \langle w,w \rangle - \langle v,w \rangle^2.$$

This gives a semi-riemannian metric. The plane Π is *nondegenerate* if

$$Q(v,w) \neq 0, \qquad \forall v, w \in \Pi \setminus \{0\}, \ v \not \propto w.$$

The quantity |Q(v, w)| is the volume of the parallelogram defined by the vectors v and w. If Π is not degenerate, then we define the *sectional curvature* of Π bu

$$K(\Pi) \coloneqq \frac{g(R(v, w)v, w)}{Q(v, w)}$$

This definition does not depend on the choice of the vectors v and w.

Proposition 2.12. If $K(\Pi) = 0$ for all plane $\Pi \subset T_p M$, then R = 0 at the point p.

- Démonstration. 1. If v and w define a nondegenerate plane Π , then it suffices to apply the implication $K(\Pi) = 0 \Rightarrow \langle R(v, w)v, w \rangle = 0$.
 - 2. If they define a degenerate plane, then v and w can be approximated by vectors which define a nondegenerate plane. If v is null, let x be a tangent vector such that $\langle u, x \rangle \neq 0$. If not, let x be the opposite of the causal type of v. Then Q(u, x) < 0. Let $\delta \neq 0$ a small real number such that the vectors v and $w + \delta x$ define a nondegenerate plane. We assume $\delta = 1$. So thank to the first case, we get

$$\langle R(u,w)u,x\rangle + \langle R(u,x)u,w\rangle = 0$$

which implies $\langle R(u, w)u, x \rangle = 0$ for all x and so R(u, w)u = 0. Thus R(v + x, w)(v + x) = 0and R(v, w)x + R(x, w)v = 0, so R(u, w)x = R(w, x)u. If we do $u \leftrightarrow w$, we get R(w, u)x = R(u, x)u. So we have R(u, w)x = R(w, x)u = R(x, v)w. But the first Bianchi identity gives

$$R(u, w)x + R(w, x)u + R(x, u)w = 0$$

and so R(u, w)x = 0. Thus R = 0.

Corollaire 2.13. If the sectional curvature of M is, at a point p, constant to c, then

$$\forall x, y, z \in \mathbf{T}_p M, \qquad R(x, y)z = c(\langle y, z \rangle x - \langle x, z \rangle y).$$

Définition 2.14. – The *Ricci tensor* is a (0, 2)-tensor obtained by contraction of

$$\operatorname{Ric}(X,Y) \coloneqq \sum_{m=1}^{n} \varepsilon_m g(R(X,E_m),E_m)$$

where (E_i) is a orthonormal frame (whe $g(E_i, E_j) = 0$ if $i \neq j$ and $g(E_i, E_i) = \varepsilon_i = \pm 1$). This defines a symmetric form.

- The scalar curvature is the function

$$\operatorname{scal} \coloneqq \sum_{m=1}^{n} \varepsilon_m \operatorname{Ric}(E_m, E_m).$$

Proposition 2.15. We have $dscal = 2 \operatorname{div}(\operatorname{Ric})$.

Démonstration. We set the notations.

- If f is a function, then df is a 1-form defined by $df(X) \coloneqq X(f)$.
- If T is a (0,2)-tensor, then div T is a 1-form defined by div $T(X) \coloneqq \sum_{m=1}^{n} \varepsilon_m \nabla_{E_m} T(E_m, X)$.
- We work with a vector field X such that $(\nabla_Y X)_p = 0$ for $Y \in \mathscr{X}(M)$.
- We work with an orthonormal basis (E_m) such that $(\nabla_Y E_m)_p = 0$ for $Y \in \mathscr{X}(M)$.

At p, we have

$$dscal = X(scal)$$

$$= \sum_{m,j} \varepsilon_m \varepsilon_j X(g(R(E_m, E_j)E_j, E_m))$$

=
$$\sum_{m,j} \varepsilon_m \varepsilon_j [g(\nabla_X(R(E_m, E_j)E_j), E_m) + g(R(E_m, E_j)E_j, \nabla_X E_m)]$$

 \diamond

$$\begin{split} &= \sum_{m,j} \varepsilon_m \varepsilon_j g((\nabla_X R)(E_m, E_j)E_j + R(\nabla_X E_m, E_j)E_m + R(E_m, \nabla_X E_i)E_m + R(E_m, E_j)\nabla_X E_m, E_m) \\ &= \sum_{m,j} \varepsilon_m \varepsilon_j g((\nabla_X R)(E_m, E_j)E_j, E_m) \\ &= \sum_{m,j} \varepsilon_m \varepsilon_j [-g((\nabla_{E_j} R)(X, E_m)E_j, E_m) - g((\nabla_{E_m} R)(E_j, X)E_j, E_m)] \\ &= -\sum_{m,j} \varepsilon_m \varepsilon_j [(\nabla_{E_m} R)(E_j, X, E_j, E_m) + \nabla_{E_j} R(X, E_m, E_j, E_m)] \\ &= \sum_{m,j} \varepsilon_m \varepsilon_j [(\nabla_{E_j} R)(E_j, E_m, E_m, X) + \nabla_{E_M} R(E_m, E_j, E_j, X)] \\ &= 2\sum_{m,j} \varepsilon_m \varepsilon_j (\nabla_{E_j} R)(E_j, E_m, E_m, X) \\ &= 2\sum_{m,j} \varepsilon_m \varepsilon_j \nabla_{E_j} (R(E_j, E_m, E_m, X)) \\ &= 2\sum_{m,j} \varepsilon_m \varepsilon_j \nabla_{E_j} (R(E_j, E_m, E_m, X)) \\ &= 2\sum_{m,j} \varepsilon_m \varepsilon_j \nabla_{E_j} (Ric(E_j, X)) \\ &= 2\sum_{m,j} \varepsilon_m \varepsilon_j \nabla_{E_j} (Ric(X, E_j)) \\ &= 2\sum_{m,j} \varepsilon_m \varepsilon_j (\nabla_{E_j} Ric)(E_j, X) \\ &= 2 \operatorname{div}(\operatorname{Ric})X. \\ \end{split}$$

Definition-proposition 2.16. A semi-riemannian manifold (M, g) is an *Einstein manifold* if there exists a function f on M such that

$$\operatorname{Ric}_p = f(p)g_p, \quad \forall p \in M.$$
 (*)

If the dimension is greater than 3, then the function f is constant.

 $D\acute{e}monstration.$ The idea is to take the divergence of the equation (*). We have

$$\begin{aligned} \operatorname{div}(fg)(X) &= \sum_{i} \varepsilon_{i}(\nabla_{E_{i}}(fg))(E_{i}, X) \\ &= \sum_{i} \varepsilon_{i}[E_{i}(fg(E_{i}, X)) - fg(\nabla_{E_{i}}E_{i}, X) - fg(E_{i}, \nabla_{E_{i}}X)] \\ &= \sum_{i} \varepsilon_{i}[E_{i}(f)g(X, E_{i}) + f(E_{i}g(X, E_{i})) - fg(\nabla_{E_{i}}E_{i}, X) - fg(E_{i}, \nabla_{E_{i}}X)] \\ &= \sum_{i} \varepsilon_{i}E_{i}(f)g(X, E_{i}) \\ &= \left(\sum_{i} \varepsilon_{i}g(X, E_{i})E_{i}\right)(f) \\ &= X(f) = df(X) \end{aligned}$$

and so $\operatorname{div}(fg) = df$. Taking the divergence of the equation (*), we obtain $\operatorname{div}(\operatorname{Ric}) = df$ and, by the last proposition, we have $df = d\operatorname{scal}/2$. Taking its trace, we get $\operatorname{scal} = (\dim M)f$. Then we have $\operatorname{scal} = 2f + K$ for a constant K. As $\dim M \ge 2$, the function scal is a constant and so does the function f.

2.4. Killing vector field

Définition 2.17. A *Killing vector field* is a vector field such that the Lie derivative of the matrix g with respect to X is zero, that is

$$\mathscr{L}_X g = 0.$$

The associated flow of a vector field is the map

$$\Psi\colon \begin{vmatrix} M\times I \longrightarrow M, \\ (p,t)\longmapsto \Psi_t(p) \end{vmatrix}$$

such that

Т

$$\Psi(p,0) = p$$
 et $\frac{\mathrm{d}\Psi(t,p)}{\mathrm{d}t}\Big|_{t=0} = X(p).$

Proposition 2.18. A vector field X is a Killing vector field if and only if its flow is by isometries.

Démonstration. First, we show that

$$\mathscr{L}_X g = \lim_{t \to 0} \frac{1}{t} [\Psi_t^* g - g].$$
⁽¹⁾

By the chain rule, one has

$$\begin{aligned} (\mathscr{L}_X g)(A,B) &= X(g(A,B)) - g(\mathscr{L}_X A, B) - g(A, \mathscr{L}_X B) \\ &= X(g(A,B)) - g([X,A],B) - g(A, [X,B]) \\ &= g(\nabla_X A, B) + g(A, \nabla_X B) - g(\nabla_X A - \nabla_A X, B) - g(A, \nabla_X B - \nabla_B X) \\ &= g(\nabla_A X, B) + g(\nabla_B X, A). \end{aligned}$$

So X is a Killing vector field if and only if

$$\forall A, B, \qquad g(\nabla_A X, B) = -g(A, \nabla_B X).$$

But we have

$$\begin{aligned} (\Psi_t^* g - g)(A, B) &= g(d\Psi_t(A), d\Psi_t(B)) - g(A, B) \\ &= g(d\Psi_t(A), d\Psi_t(B)) - g(A_{\Psi_t}, B_{\Psi_t}) + g(A_{\Psi_t}, B_{\Psi_t}) - g(A, B). \end{aligned}$$

On the one hand, with $F = G \circ \alpha$, $\alpha(t) = \Psi_t$ and G = g(A, B), we get

$$\lim_{t \to 0} [g(A_{\Psi_t}, B_{\Psi_t}) - g(A, B)] = F'(0)$$
$$= Xg(A, B).$$

On the other hand, with $\tilde{A} = A_{\Psi_t}$ and $A \longleftrightarrow A_{\Psi_t}$, we have

$$g(d\Psi_t(A), d\Psi_t(B)) - g(A_{\Psi_t}, B_{\Psi_t}) = g(\tilde{A}, \tilde{B}) - g(A, B)$$
$$= g(\tilde{A} - A, \tilde{B}) + g(A, \tilde{B} - B)$$

with

$$\begin{split} \lim_{t \to 0} g(\tilde{A} - A, \tilde{B}) &= \lim_{t \to 0} \frac{1}{t} [g(d\Psi_t(A) - A_{\Psi_t}, d\Psi_t(B))] \\ &= \lim_{t \to 0} \frac{1}{t} g(d\Psi_t(A - d\Psi_{-t}(A_{\Psi(t)})), d\Psi_t(B)) \\ &= -\lim_{t \to 0} \frac{1}{t} g(d\Psi_t(d\Psi_{-t}(A_{\Psi(t)}) - A), d\Psi_t(B)) \\ &= -g(\lim_{t \to 0} \frac{1}{t} [d\Psi_t(d\Psi_{-t}(A_{\Psi(t)}) - A)], \lim_{t \to 0} d\Psi_t(B_{\Psi_t})) \end{split}$$

But $\lim_{t \to 0} d\Psi_t(B_{\Psi_t}) = B$ and

$$\lim_{t \to 0} \frac{1}{t} [d\Psi_t (d\Psi_{-t}(A_{\Psi(t)}) - A)] = -[A, X].$$
(*)

If we conclude the equality (*), then we will get the formula (1). Let proove the equality (*).

2.4. KILLING VECTOR FIELD

Let Ψ be the flow of a vector field V. We must prove

$$[V, W] = \lim_{t \to 0} \frac{1}{t} [d\Psi_{-t} (W_{\Psi_t} - W)]$$
(2)

Let $F_p(t) = d\Psi_{-t}(W_{\Psi_t(p)})$. The right-hand side of the equation (2) is exactly $F'_p(0)$. Assume $V_p \neq 0$. Let (x_i) a system of local coordinates such that $\partial/\partial x_i = V$. Then locally

$$x^{1}(\Psi_{t}(q)) = x^{1}(q) + t$$
 et $x^{j}(\Psi_{t}(q)) = x^{j}(q), \quad j \ge 2$

and

$$d\Psi_t\left(\frac{\partial}{\partial x_i}\right) = \sum_j \frac{\partial \Psi^j}{\partial x_i} \frac{\partial}{\partial x_j} = \frac{\partial}{\partial x_i} (\Psi_t).$$

Let $W = \sum_{i} W^{i} \frac{\partial}{\partial x_{i}}$. Thus

$$F_p(t) = \sum_i W^i(\Psi_t(p)) \frac{\partial}{\partial x_i}.$$

and so

$$F'_{p}(0) = \sum_{i} \frac{\mathrm{d}(W^{i} \circ \Psi_{t}(p))}{\mathrm{d}t} \bigg|_{t=0} \frac{\partial}{\partial x_{i}}$$
$$= \sum_{i} V_{p}(W^{i}) \frac{\partial}{\partial x_{i}}$$
$$= \sum_{i} \frac{\partial W^{i}}{\partial x^{1}} \partial_{i}.$$

 So

$$\begin{split} [V,W] &= (\partial_1,W) \\ &= [\partial_1, \sum W^i \partial_i] \\ &= \sum \partial_1 (W^1) \partial_i + W^i [\partial_1, \partial_i] \\ &= \sum \frac{\partial X^i}{\partial x^1} \partial_i = F'_p(0). \end{split} \diamond$$

Lemme 2.19. Let X be a Killing vector field on a connected manifold M such that, for all point $p \in M$, we have

$$X(p) = 0 \qquad \text{et} \qquad (\nabla X)_p = 0.$$

Then X = 0 on M.

Démonstration. The set

$$A \coloneqq \{q \in M \mid X(q) = 0 \text{ et } (\nabla X)_q = 0\}$$

is closed and nonempty. To conclude, we show that this set is open. Take $p \in A$ et Ψ_t the associated flow.

Since X(p) = 0, we have $\Psi_t(p) = 0$ for all t. Indeed, the flow satisfies $\Psi_t \circ \Psi_s = \Psi_{t+s}$. Thus we get

$$\left. \frac{\mathrm{d}\Psi_{t+s}}{\mathrm{d}t} \right|_{t=0} (p) = \left. \frac{\mathrm{d}\Psi_t}{\mathrm{d}t} \right|_{t=0} (p) = X(p) = 0$$

which concludes $\Psi_t(p) = \Psi_0(p) = p$.

Let proves that $d\Psi_t \colon \mathrm{T}_p M \longrightarrow \mathrm{T}_p M$ is the identity. We have $[X, Y]_p = (\nabla_X Y)_p - (\nabla_Y X)_p$. But the points $(\nabla_X Y)_p$ depends only on X(p) = 0, so $(\nabla_X Y)_p = 0$. So we have $(X(Y) - Y(X))_p = 0$ and

$$\frac{d\Psi_t(Y_{\Psi_t}) - Y_p}{t} = 0.$$

Let $F_p(t) := d\Psi_t(Y_{\Psi_t})$. Then $F'_p(0) = 0$. With $Y = d\Psi_s(u)$, the function $t \mapsto d\Psi_{-t}(Y_{\Psi_t})$ has a null derivative, so $d\Psi_t = 0$. Finally, the flow acts by isométries, so the flow acts by the identity. \diamond

Remarque. Klling vector fields form a Lie algebra of finite dimension because $[\mathscr{L}_X, \mathscr{L}_Y] = \mathscr{L}_{[X,Y]}$. Moreover, the dimension is less then n(n+1)/2 where $n = \dim M$.

Proposition 2.20. Let X be a Killing vector field and $f := |X|^2/2$. Then

$$\Delta f = -\operatorname{Ric}(X, X) + |\nabla X|^2.$$

Démonstration. Only calculus.

Remarque. We compute grad $f = -\nabla_X X$.

Définition 2.21. The *divergence* of a vector field X is

$$\operatorname{div} V \coloneqq \operatorname{tr}(\nabla V).$$

Théorème 2.22 (Bochores). Let M be a compact riemannian manifold with $\operatorname{Ric}(X, X) \leq 0$ for all X. Then a Killing vector field is parallel, that is $\nabla X = 0$ on M. If $\operatorname{Ric} < 0$, then there are no nonzero Killing vector field.

Démonstration. But the Stokes theorem, we have

$$\int_M \operatorname{div} V = 0.$$

Let $f = |X|^2/2$. We get

$$\int_M \nabla f = 0 = \int_M -\operatorname{Ric}(Y,X) + |\nabla X|^2$$

and so $\nabla X = 0$. Moreover, if Ric < 0, then Ric(Y, X) = 0 for all Y and so X = 0.

Théorème 2.23 (Berger). Let M a compact riemannian manifold of even dimension with positive sectional curvature. The any Killing vector field has a zero.

Démonstration. Let X be a vector field. Let $f := |X|^2/2$. Then grad $f = -\nabla_X X$. If X has no zero, then f has a positive minimum at a point $p \in M$. Then Hess $f(p) \ge 0$. Let V be a vector field. Ten

Hess
$$f(V, V) \coloneqq \langle \nabla_V (\nabla f), V \rangle = \langle -\nabla_V \nabla_X X, V \rangle$$

= $\langle R(V, X) X, V \rangle + \langle \nabla_V X, \nabla_V X \rangle.$

But $B: X \mapsto \nabla_X X$ is skew symmetric, so $(\nabla_X X)(p) = (\text{grad } f)_p = 0$, so B admits $\lambda = 0$ as an eigenvalue with X(p) as a eigenvector. As dim M is even, there exists another eigenvector V corresponding to $\lambda = 0$.

 \diamond

 \diamond

Chapitre 3 Geodesics

3.1. First definitions

Définition 3.1. Let M be a differential manifold. Let $I :=]-\varepsilon, \varepsilon[\subset \mathbf{R}$ be a interval centered at the origin and $\gamma: I \longrightarrow M$ a curve. A vector field along the curve γ is a map $X: I \longrightarrow TM$ such that

$$\forall t \in I, \qquad X(t) \in \mathcal{T}_{\gamma(t)}M.$$

Exemple. The map $t \mapsto (\gamma(t), \gamma'(t))$ is a vector field along the curve γ .

Proposition 3.2. Let M a semi-riemannian manifold et $\gamma: I \longrightarrow M$ a curve. Then there exists a unique **R**-linear operator

$$\frac{D}{\mathrm{d}t}: \{ \text{vector fields along } \gamma \} \longrightarrow \{ \text{vector fields along } \gamma \}$$

such that

$$- \frac{D}{dt}(fX) = \frac{df}{dt}X + f\frac{D}{dt}X;$$

- If $X(t) = Y(\gamma(t))$, then $\frac{D}{dt}X = (\nabla_{\gamma}Y) \circ \gamma$

Démonstration. Let $t_0 \in I$. Let (U, x) a chart on M and $J \subset I$ an interval such that $\gamma(J) \subset U$. Let $X_i := \partial/\partial x_i$. If Y is a vector field along γ , we have

$$T_{\gamma(t)}M \ni Y(t) = \sum_{j} \alpha_{j}(t)(X_{j})_{\gamma(t)}.$$

With the first two conditions, we get

$$\frac{D}{\mathrm{d}t}Y = \sum_{j} \alpha_{j} \frac{D}{\mathrm{d}t} (X_{i} \circ \gamma) + \sum_{k} \alpha_{k}' X_{k}(\gamma)$$

and, by the third condition, we obtain

$$\dot{\gamma}_t = \sum \dot{\gamma}_i X_i(\circ \gamma)$$

and

$$\frac{D}{\mathrm{d}t}(X_i \circ \gamma) = (\nabla_j X_j) \circ \gamma = \sum_i \dot{\gamma}_i (\nabla_{X_i} X_j) \circ \gamma.$$

Put everything together

$$\frac{D}{\mathrm{d}t}Y = \sum_{k} \left(\alpha'_{k} \sum_{i,j} \Gamma^{k}_{i,j,\circ\gamma} \gamma'_{i} \alpha_{j} \right) X_{k} \circ \gamma.$$

Therefore the operator exists and is unique.

Remarque. The quantity $(\nabla_{\gamma'}X)(t)$ depends only on $\dot{\gamma}(t)$. We denote $\frac{D}{dt}Y$ by $\nabla_{\dot{\gamma}}Y$.

 \diamond

Définition 3.3. Let M be a semi-riemannian manifold and $\gamma: I \longrightarrow M$ a curve of class \mathscr{C}^{∞} . A vector field X along the curve γ is *parallel* if $\nabla_{\dot{\gamma}} X = 0$.

Définition 3.4. A curve γ is a *geodesic* if $\nabla_{\dot{\gamma}}\dot{\gamma} = 0$.

Théorème 3.5. Let M be a semi-riemannian manifold and $\gamma:]a, b[\longrightarrow M$ be a curve. Let $t_0 \in I$ be a real number and $X_0 \in T_{\gamma(t_0)}M$ a tangent vector. Then there exists a unique vector field Y along the curve γ such that $Y(t_0) = X_0$.

Démonstration. Let (U, x) be a chart such that $\gamma(t_0) \in U$. Let $X_i := \partial/\partial x_i$. Let $J \subset I$ be a interval such that $\gamma(J) \subset U$. We denote

$$\dot{\gamma}(t) = \sum \dot{\gamma}^i(t) X_i(\gamma(t))$$
 et $Y(t) = \sum_j \alpha_j(t) X_j(\gamma(t)).$

Then

$$\frac{DY}{\mathrm{d}t}(t) = \sum_{k} \left[\dot{\alpha}_{k}(t) + \sum_{i,j} \alpha_{j}(t) \dot{\gamma}_{i}(t) \Gamma_{i,j}^{k}(\gamma(t)) \right] X_{k}(\gamma(t))$$

and so

$$\frac{DY}{\mathrm{d}t}(t) = 0 \quad \Longleftrightarrow \quad \forall k, \ \dot{\alpha}_k(t) + \sum_{i,j} \alpha_j(t) \dot{\gamma}_i(t) \Gamma^k_{i,j}(\gamma(t)) = 0. \tag{(*)}$$

Let admits the Picard-Lindelöf-Cauchy theorem :

Let $f: I \times U \longrightarrow \mathbf{R}^n$ a continuous function which is Lipschitz in x. Then there exists an unique solution $x: I \longrightarrow \mathbf{R}^n$ of the system

$$x'(t) = g(t, x(t))$$
 et $x(t_0) = x_0.$

So there exists a solution to the equation (*) for any initial data. One can extend Y(t) to I because the coefficients in the equation (*) are bounded for $t \in I$.

Lemme 3.6. Let X and Y be two parallel vector field along a curve γ . The the map

$$t \longmapsto g_{\gamma(t)}(X(t), Y(t))$$

a constant. For $X = Y = \dot{\gamma}$, if γ is a geodesic, then $g(\dot{\gamma}, \dot{\gamma}) = |\gamma|^2$ is constant.

Remarque. So causal type of geodesics is preserve on frame (X_i) .

Théorème 3.7. Let M be a semi-riemannian manifold. Let $p \in M$ and $v \in T_p M$. Then there exists an open interval I and a unique geodesic $\gamma: I \longrightarrow M$ such that

$$\gamma(0) = p$$
 et $\dot{\gamma}(0) = v$

Démonstration. Let (U, x) be a chart such that $\gamma(t_0) \in U$. Let $X_i := \partial/\partial x_i$. Let $J \subset I$ be a interval such that $\gamma(J) \subset U$. We write

$$\dot{\gamma} = \sum_{i} \dot{\gamma}_i (X_i \circ \gamma).$$

We have

$$\nabla_{\dot{\gamma}}\dot{\gamma}\sum_{k} \left[\ddot{\gamma}_{k}(t) + \sum_{i,j}\dot{\gamma}_{j}(t)\dot{\gamma}_{j}(t)\Gamma_{i,j}^{k}\circ\gamma\right]X_{k}(\gamma(t)).$$

So γ is a geodesic if and only if

$$\ddot{\gamma}_k(t) + \sum_{i,j} \dot{\gamma}_j(t) \dot{\gamma}_j(t) \Gamma^k_{i,j} \circ \gamma, \qquad \forall k$$

if on only if its components satisfy the systems of second order nonlinear ordinary differential equation. Existence is given, for any initial data p and v, by the Picard-Lindelöf-Cauchy theorem. \diamond

Chapitre 4 Examples

Exemple. The euclidean space \mathbf{R}^n is a semi-riemannian manifold. The geodesics are straight lines. Indeed, we have $\Gamma_{i,j}^k = 0$ and a path γ must verify the equation

$$\ddot{\gamma}^k + \Gamma^k_{i,j} \dot{\gamma}^i \dot{\gamma}_j = 0$$

Exemple. The sphere \mathbf{S}^n is a riemannian manifold. Indeed, it is a differentiable manifolds by the charts

$$\pi_N \colon \left| \begin{array}{c} \mathbf{S}^n \setminus \{N\} \longrightarrow \mathbf{R}^n, \\ (x_1, \dots, x_n) \longmapsto \left(\frac{x_1}{1 - x_{n+1}}, \dots, \frac{x_n}{1 - x_{n+1}} \right) \right| \\ \end{array} \right|$$

and

$$\pi_S \colon \left| \begin{array}{c} \mathbf{S}^n \setminus \{S\} \longrightarrow \mathbf{R}^n, \\ (x_1, \dots, x_n) \longmapsto \left(\frac{x_1}{1 + x_{n+1}}, \dots, \frac{x_n}{1 + x_{n+1}} \right) \right. \right.$$

where the points N and S are the north and south poles. These two charts are bijective and we can verify that there compositions are \mathscr{C}^{∞} maps.

We find the tangent spaces. Let $p \in \mathbf{S}^n$. Take a curve $\gamma:]-\varepsilon, \varepsilon[\longrightarrow \mathbf{S}^n$ with $\gamma(0) = p$. Then we have $|\gamma(0)|^2 = 1$ and thus $\dot{\gamma}(0) \in \mathbf{T}_p \mathbf{S}^n$. We can prove $\mathbf{T}_p \mathbf{S}^n = \{X \in \mathbf{R}^{n+1} \mid \langle p, X \rangle = 0\}$.

We must equip the sphere with a metric. For $X, Y \in T_p \mathbf{S}^n$, we set

$$g_{\mathbf{S}^n,p}(X,Y) \coloneqq \langle X,Y \rangle_{\mathbf{R}^{n+1}}.$$

Then the tensor g is a metric on the sphere \mathbf{S}^n . We get a riemannian manifold.

We must understand the Levi-Civita connection. We define the connection ∇ on \mathbf{S}^n by

$$\nabla_X Y \coloneqq (\partial_X Y)^{\text{tangen}}$$

and we will check that it is indeed the Levi-Civita connection. Here, the « tangent » is the projection on the tangent space according the decomposition $\mathbf{R}^{n+1} = \mathbf{R}p \oplus \mathbf{T}_p \mathbf{S}^n$ and we denote $\partial_X Y = dY(X)$. First, we prove that

$$\nabla_X Y = \partial_X Y + \langle X, Y \rangle p.$$

The normal part of $\partial_X Y$ is $\langle \partial_X Y, p \rangle p$. But $\langle Y, p \rangle = 0$, so $X \langle Y, p \rangle = 0$ and $\langle \partial_X Y, p \rangle + \langle Y, \partial_Y p \rangle = 0$ and $\partial_X p = dp(X) = X$. So the normal part of $\partial_X Y$ is $-\langle X, Y \rangle p$. Next, we observe that

$$\langle Z, \nabla_X Y \rangle = \langle Z, \partial_X Y \rangle.$$

By the Koszul formula, we have

$$2\langle Z, \partial_X Y \rangle = X \langle Z, Y \rangle - Z \langle X, Y \rangle$$

and

$$\langle Z, \partial_X Y \rangle = \langle Z, \nabla_X Y \rangle + Y \langle X, Y \rangle - \langle X, [Y, Z] \rangle + \langle Y, [Z, X] \rangle + \langle Z, [X, Y] \rangle.$$

So we get the Koszul formula. By the uniqueness, this is the Levi-Civita connection.

Let us find the curvature. We have

$$-R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

= $\nabla_X (\partial_Y Z + \langle Z, Y \rangle p) - \nabla_Y (\partial_X Z + \langle Z, X \rangle p) - (\nabla_{[X,Y]} Z + \langle Z, [X,Y] \rangle p)$
= $\partial_X \partial_Y z - \partial_Y \partial_X Z - \partial_{[X,Y]} z) + (\langle X, \partial_Y Z \rangle p - \langle Y, \partial_X Z \rangle p - \langle [X,Y], Z \rangle p) + (\partial_X \langle Y, Z \rangle p - \langle X, \langle Y, Z \rangle p \rangle p)$
= $\langle Y, \partial_Y Z \rangle p - \langle Y, \partial_X Z \rangle p - \langle [X,Y], Z \rangle p + \partial_X (\langle Y, Z \rangle p) - \partial_Y (\langle X, Z \rangle p).$

But $\partial_X(\langle Y, Z \rangle p) = \langle \nabla_X Y, Z \rangle p + \langle Y, \nabla_X Z \rangle p + \langle Y, Z \rangle p$ and so

$$-R(X,Y)Z = \langle \nabla_X Y, Z \rangle p - \langle \nabla_Y X, Z \rangle p - \langle [X,Y], Z \rangle p + \langle Y,Z \rangle p - \langle X,Z \rangle p$$
$$= \langle Y,Z \rangle X - \langle X,Z \rangle Y.$$

The sectional curvature is K = +1. The Ricci tensor is

$$\operatorname{Ric}(X,Y) = (n-1)\langle X,Y \rangle$$

and the scalar curvature is

$$\operatorname{scal} = n(n-1).$$

Let us find the geodesics. Let γ a geodesics. Then $\nabla_{\dot{\gamma}}\dot{\gamma} = 0$. But

$$\begin{aligned} \nabla_{\dot{\gamma}} \dot{\gamma} &= (\partial_{\gamma} \dot{\gamma}) \\ &= \ddot{\gamma}^{\text{tangent}} \\ &= \ddot{\gamma} - \ddot{\gamma}^{\text{normal}} \\ &= \ddot{\gamma} - \langle \ddot{\gamma}, \gamma \rangle \gamma \end{aligned}$$

After calculus, we find that the geodesics are great circles.

Exemple. The hyperbolic space is $\mathbf{H}^m \coloneqq \mathbf{R}^*_+ \times \mathbf{R}^{m-1}$. Its tangent spaces are $\mathbf{T}_p \mathbf{H}^m \simeq \mathbf{R}^m$. We equip this manifold with the metric

$$g(X,Y) = \frac{\langle X,Y \rangle}{x_1^2}.$$

It is a riemannian manifold with sectional curvature equal to -1.

We can choose others models of the hyperbolic space such as

$$\mathbf{H}^{m} = \{ (x_{0}, \dots, x_{m}) \in \mathbf{R}^{m+1} \mid x_{0} > 0, \ -x_{0}^{2} + x_{1}^{2} + \dots + x_{m}^{2} = -1 \}.$$

Equipped with the induce metric, it is a riemannian manifold. An other model is the Poincaré model

$$\mathbf{D}^m \coloneqq \{x \in \mathbf{R}^m \mid |x| < 1\}$$

with the metric

$$g(X,Y) = \frac{4}{(1-|x|^2)^2} \langle X,Y \rangle.$$

The sectional curvature is also equal to -1.

Exemple. The curvature of \mathbf{R}_1^m is zero, its geodesics are straight lines.

Exemple. We set the pseudo-sphere $\mathbf{S}_{\nu}^{n-1} \subset \mathbf{R}_{\nu}^{n}$. The tangent space is

$$T_p \mathbf{S}_{\nu}^{n-1} = \{ X \in \mathbf{R}^n \mid \langle p, X \rangle_{\mathbf{R}_{\nu}^n} = 0 \}.$$

The pseudo-spere equipped with the metric $\langle \cdot, \cdot \rangle_{\mathbf{R}_{\nu}^{n}}$ is a riemannian manifold of signature $(\nu, n-1-\nu)$. It is diffeomorphic to $\mathbf{R}^{\nu} \times \mathbf{S}^{n-1-\nu}$ and it sectional curvature is +1. The geodesics are branches of hyperboloids, straight line or periodic curves on ellipsoids : we can prove this by considering different cases (the vectors to join are time, space or light like). More over, a curve γ is a geodesic if and only iff the curves $\ddot{\gamma}$ and γ are parallel.

Chapitre 5 Calculus of variations

Let M be a semi-Riemannian manifold. Let $\gamma: I \longrightarrow M$ be a curve. We recall that the set A_{γ} is the set of maps $Y: I \longrightarrow TM$ along the curve γ , that is such that

$$\forall t \in I, \qquad Y(t) \in \mathcal{T}_{\gamma(t)}M.$$

A such map Y can be write

$$Y(t) = \sum_{j} \alpha_{j}(t) (X_{j} \circ \gamma)(t)$$

on a chart (U, x^i) with $X_j := \partial/\partial x^j$. The derivation for A_γ is

$$\frac{D}{\mathrm{d}t}Y(t) = \sum_{k} \left(\dot{\alpha}_{k}(t) + \sum_{i,j} \Gamma_{ij}^{k}(\gamma(t))\dot{\gamma}_{i}(t)\alpha_{j}(t)\right) X_{k}(\gamma(t)).$$

Facts.

- 1. For all $X_0 \in T_{\gamma(0)}M$, there exists $Y \in A_{\gamma}$ such that $Y(0) = X_0$ and $\frac{D}{dt}Y = 0$.
- 2. For all $X_0 \in T_a M$, there exists $t_0 > 0$ and $\gamma : [0, t_0[\longrightarrow M \text{ such that } \gamma(a) = X_0 \text{ and } \frac{D}{dt}\gamma = 0$. Such a γ is called a *geodesic*.
- 3. We also write $\frac{D}{dt}Y = Y' = \dot{Y} = \nabla_{\dot{\gamma}}Y$.
- 4. If γ is a geodesic, then

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\dot{\gamma},\dot{\gamma}\rangle = \langle\ddot{\gamma},\dot{\gamma}\rangle = 0$$

Définition 5.1. Let M be a semi-Riemannian manifold. A variation of a function $\alpha : [a, b] \longrightarrow M$ of class \mathscr{C}^{∞} is a map $x : [a, b] \times] - \delta, \delta[\longrightarrow M$ of class \mathscr{C}^{∞} with $\delta > 0$ such that $x(u, 0) = \alpha(u)$. The variation vector field is the vector field V such that

$$V(u) \coloneqq \frac{\partial x}{\partial v}(u,0)$$

The *length* of α is

$$L(\alpha) \coloneqq \int_a^b |\alpha'(s)| \,\mathrm{d} s$$

where $|\cdot| = \sqrt{|\langle \cdot, \cdot \rangle|}$. The *length* of V is

$$L(v) = L_x(v) = \int_a^b \left| \frac{\partial x}{\partial u}(s, v) \right| \mathrm{d}s$$

We consider curves such that $|\gamma'(t)| > 0$, called *regular curves of space-like*. We denote ε the sign of $\langle \alpha', \alpha' \rangle$.

Lemme 5.2. If x is a variation of α with $|\alpha'| > 0$, then

$$L'_{x}(0) = \varepsilon \int_{a}^{b} \langle \frac{\alpha'(u)}{|\alpha'(u)|}, V'(u) \rangle \,\mathrm{d}u.$$

Démonstration. With $x_u = \frac{\partial x}{\partial u}$, we have

$$L(u) \coloneqq \int_{a}^{b} |x_u(u, v)| \,\mathrm{d}u.$$

We have $\alpha' = x_u(u, 0)'$. So for δ small enough, we have $|x_u(u, v)| > 0$ for $u \in [-\delta, \delta[$. So

$$L'(0) = \int_a^b \left. \frac{\mathrm{d}}{\mathrm{d}u} \right|_{u=0} |x_u| \,\mathrm{d}t$$

But we get

$$\frac{\mathrm{d}}{\mathrm{d}u} |x_u| = \frac{1}{2} (\varepsilon \langle x_u, x_u \rangle)^{-1/2} 2\varepsilon \langle x_u, x_{uv} \rangle = \frac{\varepsilon \langle x_u, x_{uv} \rangle}{\langle x_u, x_u \rangle}.$$

 \diamond

 \diamond

Take u = 0, we get $x_u(u, 0) = \alpha'(0)$ and $x_v(u, 0) = V(u)$ and $x_{uv}(u, 0) = V'(u)$.

Proposition 5.3 (first variation). Let $\alpha: [a, b] \longrightarrow M$ be a continuous and smooth curve piece-wise of constant speed c > 0 and of sign ε . Let x be a variation of α . Then

$$L'(0) = -\frac{\varepsilon}{c} \int_{a}^{b} \langle \alpha'', V \rangle \,\mathrm{d}u - \frac{\varepsilon}{c} \sum_{i=1}^{n} \langle \Delta \alpha'(U_i), V(U_i) \rangle + \frac{\varepsilon}{c} \langle \alpha', V \rangle |_{a}^{b}$$

with $U_1 < \cdots < U_k$ are points where α is not \mathscr{C}^{∞} and

$$\Delta \alpha'(U_i) = \alpha'(U_i^+) - \alpha'(U_i^-) \in \mathcal{T}_{\alpha(U_i)}M.$$

Démonstration. We have

$$\langle \frac{\alpha'}{|\alpha'|}, V \rangle = \frac{1}{c} \langle \alpha', V' \rangle.$$

On $[U_i, U_{i+1}]$, we have

$$\langle \alpha', V' \rangle = \frac{\mathrm{d}}{\mathrm{d}u} \langle \alpha', V \rangle - \langle \alpha'', V \rangle.$$

 So

$$\int_{U_i}^{U_{i+1}} \langle \alpha', V' \rangle \, \mathrm{d}u = \langle \alpha', V \rangle_{U_i}^{U_{i+1}} - \int_{U_i}^{U_{i+1}} \langle \alpha'', V \rangle \, \mathrm{d}u.$$

We sum up to obtain the desired formula.

Corollaire 5.4. A piece-wise smooth curve α with constant speed c > 0 is a geodesic if and only if the first variation of L is zero for any variation with fixed ends.

Remarque. Fixed ends imply that V is zero at a and b and

$$\frac{\varepsilon}{2} \langle \alpha', V \rangle |_a^b = 0.$$

Démonstration. Suppose that α is a geodesic, that is $\alpha'' = 0$. Then α is smooth, so $\Delta \alpha'(U_i) = 0$. In particular, we get V(a) = V(b) = 0 and so L'(0) = 0.

Suppose that L'(0) = 0. First we show that α is a geodesic on $]U_i, U_{i+1}[$, that is $\alpha''(t) = 0$ for $t \in]U_i, U_{i+1}[$. Let y be in $T_{\alpha(t)}M$ and f a smooth function defined on [a, b] with supp $f \subset [t - \delta, t + \delta] \subset]U_i, U_{i+1}[$ and $f \in [0, 1]$ and f = 1 on $]t - \delta/2, t + \delta/2[$. Let Y be the vector field obtained by parallel transport of y along α , that is $\frac{D}{dt}Y = 0$ and Y(t) = 0. Let $V \coloneqq fY$. Then V(a) = V(b) = 0. Let exp be the exponential map, that is the map

$$\exp_p \colon D \subset \mathrm{T}_p M \longrightarrow M$$

with $p \in M$ where

$$\exp_p(v) = B(1)$$

where B is the geodesic starting at p with initial speed v and where

$$D = \{ v \in \mathcal{T}_p M \mid B(1) \text{ exists} \}.$$

Let $x(u,v) = \exp_{\alpha(u)}(vV(u))$. Then x(u,v) is a variation of α with fixed ends. So L'(0) = 0 and then

$$0 = \int_a^b \langle \alpha'', v \rangle \, \mathrm{d} u$$

Chapitre 5. Calculus of variations

$$= \int_{t-\delta}^{t+\delta} \langle \alpha'', fY \rangle.$$

This implies that

$$\forall y \in \mathbf{T}_{\gamma(t)}M, \qquad \langle \alpha''(t), y \rangle = 0$$

and so $\alpha''(t) = 0$ on each $|U_i, U_{i+1}|$.

If $y \in T_{\alpha(U_i)}M$, let f have its support in $]U_{i-1}, U_{i+1}[$ with f = 1 around U_i . So

$$0 = L'(0) = -\frac{\varepsilon}{c} \langle \Delta \alpha'(U_i), y \rangle, \qquad \forall y$$

and so

$$\Delta \alpha'(U_i) = 0.$$

We will compute L''(0) if L'(0) = 0. Any vector field Y along α decomposes as $Y = Y^T + Y^{\perp}$ where $Y^T = \varepsilon \langle Y, \alpha' \rangle \alpha' =: f \alpha'$ and Y^{\perp} is orthogonal to α' . If α is a geodesic, then

$$Y' = f'\alpha' + (Y^{\perp})'.$$

Moreover, we have $(Y')^{\perp} = (Y^{\perp})'$.

Théorème 5.5 (second variation). Let γ be a geodesic of constant speed c > 0 and of sign ε . If x is a variation of γ , then

$$L''(0) = \frac{\varepsilon}{c} \int_{a}^{b} \langle V'^{\perp}, V'^{\perp} \rangle - \langle R(V, \gamma')V, \gamma' \rangle \,\mathrm{d}u + \frac{\varepsilon}{c} \langle \gamma', A \rangle |_{a}^{b}$$

where $V(u) = x_v(u, 0)$ and $A(u) = x_{vv}(u, 0)$.

Let $\Omega(p,q)$ be the space of smooth piece-wise curves from [a,b] to M starting at p and ending at q. The tangent space to $\Omega(p,q)$ at α is the set $T_{\alpha}\Omega(p,q)$ of vector fields V along α with V(a) = V(b) = 0. The index of $\sigma \in \Omega(p,q)$ is the bilinear symmetric form

$$I_{\sigma} \colon \mathrm{T}_{\sigma}\Omega \longrightarrow \mathrm{T}_{\sigma}\Omega$$

such that $I_{\sigma}(V, V) = L_x(\sigma)$ where x is a variation with fixed ends and variation vector V, that is

$$I_{\sigma}(V,W) = \frac{\varepsilon}{c} \int_{a}^{b} \langle V'^{\perp}, V'^{\perp} \rangle - \langle R(V,\sigma')W, \sigma' \rangle \,\mathrm{d}u.$$

We have $I_{\sigma}(V, W) = I_{\sigma}(V^{\perp}, W^{\perp}).$

Lemme 5.6. Let σ be a non-null geodesic with sign ε . Let M be a semi-Riemannian manifold with index ν . Then

1. if I_{σ} is semi-definite positive, then $\nu = 0$ or n;

2. if I_{σ} is semi-definite negative, then $\nu = 1$ or n - 1.

Définition 5.7. Let γ be a geodesic. A vector field Y along γ is called *Jacobi field* if

$$Y'' = R(Y, \gamma')\gamma'.$$

If x is a variation of γ such that

$$v, \qquad u \longmapsto x(u, v) \text{ is a geodesic,}$$

then the variation vector $u\longmapsto \frac{\partial x}{\partial v}(u,0)$ is a Jacobi field.

A

For all $v, w \in T_p M$, there exists an unique Jacobi field Y along γ such that Y(0) = v and Y'(0) = w.

Définition 5.8. Two points $\sigma(a)$ and $\sigma(b)$ with $a \neq b$ on a geodesic σ are *conjugate* if there exists a nontrivial Jacobi field Y such that J(a) = J(b) = 0.

Then $\sigma(a)$ and $\sigma(b)$ are conjugate if and only if there exists a variation x of σ such that the map $u \mapsto x(u, v)$ is a geodesic, for all v, started from $\sigma(a)$ such that $\frac{\partial x}{\partial u}(b, 0) = 0$. This is equivalent to the fact that the exponential map $\exp_p: T_p M \longrightarrow M$ is singular at $b\sigma'(0)$, that is there is a tangent vector x to p at $b\sigma'(0)$ such that $d(\exp_p)_{b\sigma'(0)}(x) = 0$.

Lemme 5.9. Let σ be a geodesic such that $\sigma^{\perp}(s) \in T_{\sigma(s)}M$ is space-like. If $\langle R(v, \sigma')v, \sigma' \rangle \leq 0$ for all $v \perp \sigma'$, then there is no conjugate points along σ .