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Chapitre 1

Differentiable manifolds
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1.1. Differentiable manifolds

Let S be a topological connected Hausdorff and paracompact space. A chart is a homeomor-
phism ξ from and open subset of S in a open subset η(U) ⊂ Rn. It can be written

ξ(P ) = (x1(p), . . . , xn(p)), ∀p ∈ U

where the maps xi are called the coordinates functions of ξ and we will denote ξ = (x1, . . . , xn).
Two charts ξ and η of dimension n intersect in a smooth manner if the maps ξ ◦ η−1 and η ◦ ξ−1

are of classe C ∞.
An atlas is a collection of charts of dimension n such that

– for all point p ∈ S, there exist an open subset U such that p ∈ U ;

– two charts intersect in a smooth manner.

An atlas is complete if it contains all the charts of S which intersect in a smooth manner. Any atlas
admits a completion.

Définition 1.1. A differentiable manifold is a topological space equipped with a complete atlas.

Exemples. – The euclidean space is a differentiable manifold.

– The sphere Sn ⊂ Rn+1 is a differentiable manifold of dimension n.

– A cartesian product of differentiable manifolds is also a differentiable manifold.

Définition 1.2. Let M be a differentiable manifold. A function f : M −→ R is of class C ∞ if, for
any chart (U, η), the maps

f ◦ η−1 : η−1(U) −→ R

is of class C ∞.

The sum, product and inverse are of class C ∞.

Définition 1.3. Let M and N be two differentiable manifolds. A map ϕ : M −→ N is of class C ∞

if, for any charts (U, ξ) of M and (V, η) of N , the map
η ◦ ϕ ◦ ξ−1 : ξ(U) −→ η(V ).

is of class C ∞.
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1.2. Tangent spaces and tangent bundle

Définition 1.4. Let p ∈ M a point. Let F (M) be the space of functions of class C ∞ on M . A
tangent vector at the point p is a R-linear map v : F (M) −→ R satisfying the Leibniz rules

v(fg) = f(p)v(g) + g(p)v(f).
The space of all tangent vectors at the point p is the tangent space at the point p, denoted TpM .

Let (U, ξ) a chart, p ∈ U a point and f ∈ F (M) a function. We denote η = (x1, . . . , xm) and
∂f

∂xi
(p) := ∂(f ◦ η−1)

∂ui
(η(p)).

where the notation ui are the coordinates on Rm. The map

∂i|p := ∂

∂xi

∣∣∣∣
p

: F (M) −→ R

are a tangent vector at the point p. The vectors ∂i|p form a basis of TpM .

Définition 1.5. Let ϕ : M −→ N be a map of class C ∞. For all point p ∈M , we define the R-linear
map

dϕp : TpM −→ Tϕ(p)N

by the equality
dϕp(v) = vϕ ∈ Tϕ(p)N

where
vϕ(g) := v(g ◦ ϕ).

With coordinate (x1, . . . , xm) on M and (y1, . . . , yn), we have

dϕ(p)(∂j |p) =
n∑

i=1

∂(yi ◦ ϕ)
∂xj

(p) ∂

∂yi

∣∣∣∣
ϕ(p)

.

Remarque. If the maps ϕ : M −→ N and ψ : N −→ P are smooth, then the composition ψ ◦ ϕ is
also a smooth map.

Définition 1.6. A vector field is a a map V which send each point p ∈ M on a tangent vector
Vp ∈ TpM .

If f ∈ F (M), we denote V (f)(p) := Vp(f).

Définition 1.7. If V (f) is of class C ∞ for all f ∈ F (M), then V is of class C ∞.

The sum of two vector fields is a vector field. The multiplication of a vector field by a function
is a vector field. The bracket of two vector fields V and W is defined by

[V,W ]p(f) := Vp(W (f))−Wp(V (f)).
It is skew-symmectric R-bilinear. It satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.
We have

[fX, gY ] = fg[X,Y ] + f(X(g))Y − g(Y (f))X.

Exemple. We have [∂i, ∂j ] = 0.

Définition 1.8. A differentiable manifold P is a sub-manifold of M if
– P ⊂M ;
– the injection map j : P ↪−→M is a map of class C ∞ ;
– it differential djp : TpP −→ Tj(p)M is injective for all p ∈ P .
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Théorème 1.9 (Whitney). Let M be a C ∞-differentiable manifold of dimension n. Then there
exists an immersion M −→ R2n.

The tangent bundle of M is TM :=
⊔

p∈M TpM . With TM = {(p, v) | p ∈ M,v ∈ TpM}, we
have a natural map π : TM −→M which satisfies π−1(p) = TpM . We can show that the tangent
bundle is a manifold of dimension 2n. Indeed, let be (U, ξ) a chart on M with ξ = (x1, . . . , xn).
Let v ∈ TpM . We can write

v =
∑

vi ∂

∂xi

∣∣∣∣
p

with vi ∈ R. We consider

η̃ :

∣∣∣∣∣π
−1(U) ⊂ TM −→ R2n,

(p, u) 7−→ (x1(π(p, u)), . . . , xn(π(p, u)), v1, . . . , vn).

where vi = v(xi) =: ẋi(u). This defines a atlas on TM . If (u1, . . . , u2n) are the coordinates on R2n,
the transition functions are given by

uiξ̃ ◦ η̃−1 = xi ◦ π ◦ η̃−1(a, b) = xiη−1(a),

uiξ̃ ◦ η̃−1 = ẋi ◦ η̃−1(a, b) =
∑

bk ∂x
i

∂yk
(η−1(a)).

So the map ξ̃ ◦ η̃−1 are of class C ∞.

Remarque. A vector field X : M −→ TM is a map of class C ∞ such that π ◦X = IdM .

Remarque. In general, we have TM ̸= M ×Rn. This is the case for S3.

Exemple. We consider the sphere S2. It is a manifold of dimension 2. We want to calculate it
tangent space at a point p ∈ S2. Let γ : ]−ε, ε[ −→ S2 be a curve of class C ∞ on S2 with γ(0) = p.
It acts on functions on S2. For a function f : S2 −→ R, we denote

γ̇(0) · f := d
dt

∣∣∣∣
t=0

(f ◦ γ)(t)

We have
dγ
dt

∣∣∣∣
t=0

= γ̇(0) ∈ TpS2

and all tangent vector can be obtained this way. As |γ| = 1, we find
d
dt |γ(t)|2 = 0 = 2⟨p, γ̇(0)⟩.

Thus we conclude
TpS2 = {X ∈ R3 | ⟨X, p⟩ = 0}.

Exemples. Open subsets of Rn are differentiable manifolds. The half-plane H2 := R×R∗
+ has the

tangent space TpH2 = R2 and so its tangle bundle is TH2 = H2 ×R2.

Exemples. – The image of the map ∣∣∣∣∣]−1, 1[ −→ R2,

t 7−→ (t, |t|)

is a differentiable manifold but not a submanifold of R2.
– The map ∣∣∣∣∣R −→ R2,

t 7−→ (t3, t2)

is differentiable but not an immersion.
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– The map ∣∣∣∣∣R −→ R2,

t 7−→ (t3 − 4t, t2 − 4)

is differentiable and an immersion, but there is a self-intersection sot it is not an embedding.
– The map t 7−→ (t, sin(1/t)) is an immersion with no self-intersecting point, but it is not an

embedding.
– The cone

{
x2 + y2 − z2 = 0

}
is not a submanifold of R3 for connectivity reasons.

1.3. Tensors

Let V be a module over a ring K.

Définition 1.10. Let r, s ∈ N be integers with rs > 0. A tensor of type (r, s) is a K-multilinear
function

(V ∗)r × V s −→ K.

We denote Tr,s(V ) the set of tensors of type (r, s).

A tensor field is a tensor on the ring X (M) which denotes the set of vectors field on a
differentiable manifold M . The set X (M) is a module on the ring F(M) of functions on M . So a
tensor field of type (r, s) is a F(M)-linear map

A : X ∗(M)r ×X (M)s −→ F(M).

Exemple. The map

C :

∣∣∣∣∣X ∗(M)×X (M) −→ F(M),
(θ,X) 7−→ θ(X)

is a tensor.

Counter-example. Let ω ∈X ∗(M) a linear form. The map

F :

∣∣∣∣∣X (M)×X (M) −→ F(M),
(X,Y ) 7−→ X(ω(Y ))

is not a tensor field.

Remarque. When A ∈ Tr,s(V ) and B ∈ Tr′,s′(V ), we can define the tensor A×B ∈ Tr+r′,s+s′(V )
with the equality
A⊗B(θ1, . . . , θr+r′

, X1, . . . , Xs+s′) = A(θ1, . . . , θr, X1, . . . , Xs)A(θr+1, . . . , θr+r′
, Xs+1, . . . , Xs+s′).

Proposition 1.11. Let p ∈M and A ∈ Tr,s(M). Let θi and θi be 1-forms which agree on p. Let Xi

and Xi be vector field which agree on p. Then

A(θ1
, . . . , θ

r
, X1, . . . , Xs)(p) = A(θ1, . . . , θr, X1, . . . , Xs)(p).

Thus we can define the map
Ap : (T∗

pM)r × (TpM)s −→ R.

Démonstration. We show that, if θi0(p) = 0 or Xi0(p) = 0, then A(θ1, . . . , θr, X1, . . . , Xs)(p) = 0.
Let (U, (x1, . . . , xn)) be a chart. Then we can write Xj0 =

∑
Xi∂i. Let f be a bump function on U

with f(p) = 1. We have Xj0(p) = 0⇔ Xi(p) = 0,∀i and f2Xj0 is a vector field and we can write
f2Xj0 =

∑
fXi(f∂i). So
f2A(θ1, . . . , θr, X1, . . . , Xs) = A(θ1, . . . , θr, X1, . . . , f

2Xj0 , . . . , Xs)

=
∑

i

fxIA(θ1, . . . , θ
r, X1, . . . , f∂i, . . . , X

s)

and A(θ1, . . . , θr, X1, . . . , Xs)(p) = 0. ⋄
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Let (U, (x1, . . . , xn)) be a map. Let p ∈ U . On U , we denote
Ai1,...,is

j1,...,js
:= A(dxi1 , . . . ,dxir , ∂ji, . . . , ∂js)

and we have
A =

∑
Ai1,...,is

j1,...,js
∂ji ⊗ · · · ⊗ ∂js ⊗ dxi1 ⊗ · · · ⊗ dxir .

The contraction of A on the indices i and j is the tensor field Ci
jA of type (r − 1, s− 1) which is

the composition of C and the tensor
(θ,X) 7−→ A(θ1, . . . , θ, . . . , θr, X1, . . . , X, . . . ,Xs).

The component of Ci
jA are Ai1,...,m,...,ir

j1,...,m,...,js
with m ∈ {1, . . . , n}.

Définition 1.12. Let ϕ : M −→ N a differentiable map. If A ∈ T0,s(N), we set
ϕ∗A(X1, . . . , Xs) := A(dϕ(X1), . . . , dϕ(Xs)).

The tensor ϕ∗A ∈ T0,s(M) is the pull-back of A by ϕ.

Définition 1.13. A derivation of tensor is a R-linear map
D : Tr,s(M) −→ Tr,s(M)

such that
D(A⊗B) = DA⊗B +A⊗DB

and
D(CA) = C(DA).

For a function f ∈ F(M) ⊂ T0,0(M), we set f ⊗A = fA and we have D(fA) = fDA+ (Df)A.
The derivation D is a derivation of functions so there exists a V ∈X (M) such that Df = V (f).
The chain rule becomes

D(A(θ1, . . . , θr, X1, . . . , Xs)) = (DA)(θ1, . . . , θr, X1, . . . , Xs)

+
r∑

i=1
A((θ1, . . . , Dθi, . . . , θr, X1, . . . , Xs)) +

s∑
i=1

(θ1, . . . , θr, X1, . . . , DXj , . . . , Xs).

Théorème 1.14. Given a vector field V and an R-linear map δ : X (M) −→X (M) such that
δ(fX) = V (f)W + f(δX),

there exists a unique derivation of tensors which equals to δ on X (M) and V on F(M).

Définition 1.15. Let V ∈X (M). Then we set the derivation LV as
LV (f) := V (f) et LV (X) := [V,X]

for all f ∈ F(M) and X ∈X (M). It is called the Lie’s derivation.

Définition 1.16. Let V be a vector space. The index of a bilinear form b is the dimension of the
largest subspace W ⊂ V such that the restriction b|W ×W is negative definite.

A vector v ∈ V is null or isotropic if v ̸= 0 and b(v, v) = 0.

Lemme 1.17. Let V and W be two linear spaces of the same dimension. Then they are equipped
with inner products with the same indices if and only if the exists a linear isometry V −→W .
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2.1. First definitions

Définition 2.1. A metric on a differentiable manifold M is a tensor field g on M of type (0, 2)
which is symmetric, non-degenerate and with a constant index. A semi-riemannian manifold is a
manifold M equipped with a metric g.

In general, two different metrics on a same manifold M gives two different semi-riemannian
structures on M . If the index is zero, then we say that the semi-riemannian manifold (M, g) is
riemannian. If the index is one, then we will call it lorentzian.

In local coordinates (U, (x1, . . . , xn)), we can write g =
∑
gi,j dxi ⊗ dxj with gi,j = g(∂i, ∂j).

The matrix (gi,j) is invertible, the inverse will be denoted (gi,j).

Exemple. Let ν ⩽ n be a natural integer. On the space Rn, we have the semi-riemannian
structure Rn

ν with the metric

⟨u, v⟩ = −
ν∑

i=1
uiwi +

n∑
i=ν+1

viwi.

Définition 2.2. Let p ∈M . Let (M, g) be a semi-riemannian manifold. A tangent vector v ∈ TpM
is

– space-like if v = 0 or g(v, v) = 0 ;
– null if v ̸= 0 and g(v, v) = 0 ;
– time-like if g(u, u) < 0.

Null vectors form the null cone.

If P ⊂M is a submanifold and M is equipped with a riemannian metric g, the P is a riemannian
manifold. For example, the sphere S2 admits a riemannian metric. But this is not always true for
semi-riemannian metrics.

Lemme 2.3. Let (M, gM ) and (N, gN ) two semi-riemannian manifolds. Let π : M × N −→ M
and σ : M ×N −→ N the two projections. Then the map g := π∗gN + σ∗gN is a semi-riemannian
metric on M ×N .

Définition 2.4. An isometry between two semi-riemannian manifolds (M, g) and (N,h) is a
diffeomorphism ϕ : M −→ N which preserves the metrics, that is ϕ∗g = h or

∀p ∈M, ∀u,w ∈ TpM, hϕ(p)(dϕp(u), dϕp(v)) = gp(u, v).
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Exemple. Let (u1, . . . , un) be the natural coordinates on Rn
ν . Let V and W two vector fields

on Rn. We denote W =
∑
W i∂i. We define DV W := dW (V ) =

∑
V (W i)∂i. This is the covariant

derivative of W with respect to V .

2.2. Connection and Levi-Civita connection

Définition 2.5. A connection on a manifold M is a map

D :

∣∣∣∣∣X (M)×X (M) −→X (M),
(X,Y ) 7−→ DXY

such that
– DV W is F(M)-linear in V ;
– DV W is R-linear in W ;
– DV (fW ) = V (f)W + fDV W .

Proposition 2.6. Let (M, g) be a semi-riemannian manifold. Let V ∈X (M) a vector field. Let V ∗

be the 1-form defined by
V ∗(X) := g(V,X).

Then the map V 7−→ V ∗ is a F(M)-linear isomorphism.

Exemples. – We take the sphere S2. For a point p ∈ S2 and two tangent vectors X,Y ∈ TpS2,
we can define

gp(X,Y ) := ⟨X,Y ⟩

where the notation ⟨·, ·⟩ is the standard inner product on R3. This gives a riemannian metric
on S2. If we replace the inner product ⟨·, ·⟩ by another semi-riemannian metric on R3, then
this metric is no longer semi-riemannian in general.

– If g is a riemannian metric, then a another riemannian metric is given by
g̃p(X,Y ) := ef(p)gp(x, y)

for a smooth function f ∈ C ∞(M,R).
– There exists three vector fields Ei on S3 which form a orthonormal family where the semi-

riemannian is the same as the first example. Then we can define a new semi-riemannian
metric by
◦ ⟨Ei, Ej⟩ = 0 for all i ̸= j ;
◦ |E1|2 = −1 and |E2|2 = |E3|2 = 1.

– On the half-plane H2, we can define the metric

g := dx2 + dy2

y2 .

Question. When can we equip M with a semi-riemannian metric ? It is not always the case for a
semi-riemannian metric with strictly positive index. But it is always the cases for a riemannian
metric. There is two ways to do that :

– by using the Withney’s theorem : the exists an immersion ι : M −→ RN for a large enough
integer N and we take the pullback of the euclidean matric on RN , that is

gp(X,Y ) := ⟨dιp(X), dιp(Y )⟩;

– if (Ui, x
i) are an atlas of M , we define

gp :=
∑

i

αix
∗
i ⟨·, ·⟩Rn .

Théorème 2.7. Let (M, g) be a semi-riemannian manifold. Then there exists a unique connection D
such that, for all vector fields V and W , we have
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– [V,W ] = DV W −DWV ;
– Xg(V,W ) = g(DXV,W ) + g(V,DXW )

Moreover, the connection D is characterized by the Koszul formula

2g(DV W,X) = V (g(X,W )) +W (g(X,V ))−Xg(V,W )
− g(V, [W,X]) + g(W, [X,V ]) + g(X, [V,W ]).

It is called the Levi-Civita connection.

Démonstration. Let D be a connection satisfying these two points. In the right-hand side of the
Koszul formula, using the two points, we obtain 2g(DV W,X). This proves the uniqueness because
of the one-to-one correspondance between vector fields and 1-forms.

Let proves the existence. Let F (V,W,X) the right-hand side of the Koszul formula. Then if we
take two vector fields V and W , then the map F (V,W, ·) : X (M) −→ R is F(M)-linear. So it is
a 1-form. Thus there exists a unique vector field DV W such that

g(DV W,X) = F (V,W,X), ∀X ∈X (M).

This show the Koszul formula and that the map D is a connection. With this formula, we can prove
the two points. ⋄

Notation. We will write ∇ for the Levi-Civita connection. With this notation and g(·, ·) = ⟨·, ·⟩,
the two points of the theorem are

X⟨Y, Z⟩ = ⟨∇XZ, Y ⟩+ ⟨∇XY,Z⟩,
[X,Y ] = ∇XY −∇Y X.

Définition 2.8. The Christoffel symbols for the chart (U, xi) are the functions on U given by

D∂i(∂j) =
n∑

k=1

Γk
i,j∂k.

Recall that [∂i, ∂j ] = 0 = D∂i
(∂j)−D∂j

(∂i) by the Schwarz theorem, so Γk
i,j = Γk

j,i. Moreover,
if W =

∑
W j∂j on U , then

D∂i(W ) =
∑

j

(∂i(W j)∂j +W j
∑

k

Γk
i,j∂k)

=
∑

k

(∂i(W j) +
∑

j

W jΓk
i,j)∂k

By Koszul formula, we have

Γk
i,j = 1

2
∑

ℓ

gk,ℓ

(
∂gℓ,j

∂xi
+ ∂gℓ,i

∂xj
− ∂gi,j

∂xℓ

)
.

Exemple. On Rn
ν , we have Γk

i,j = 0.

2.3. Curvature and Ricci tensor

Definition-proposition 2.9. Let (M, g) a semi-riemannian manifold and∇ its Levi-Civita connection.
The the map

R :

∣∣∣∣∣X (M)×X (M)×X (M) −→X (M)
(X,Y, Z) 7−→ R(X,Y )Z := ∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ

is a tensor field of type (1, 3), called the riemannian curvature.

There is a version of type (0, 4) given by

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).
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Démonstration. We need to check thatR(fX, Y )Z = fR(X,Y )Z andR(X,Y )(fZ) = fR(X,Y )Z.
We have [fX, Y ] = fXY − Y (f)X − fY X and

∇[fX,Y ]Z = f∇X∇Y Z

which prove the formula. ⋄

Proposition 2.10. We have the following properties :
1. R(X,Y )Z = −R(X,Y )Z ;
2. g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z) ;
3. R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 ;
4. g(R(X,Y )Z,W ) = g(R(Z,W )X,Y ).

Démonstration. 2. With g(·, ·) = ⟨·, ·⟩, one has
g(R(X,Y )Z,Z) = ⟨∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ,Z⟩

= ⟨∇[X,Y ]Z,Z⟩ − ⟨∇X∇Y Z,Z⟩+ ⟨∇Y∇XZ,Z⟩

= [X,Y ]
(
⟨Z,Z⟩
Z

)
−X⟨∇Y Z,Z⟩+ ⟨∇Y Z,∇XZ⟩+ Y ⟨∇XZ,Z⟩ − ⟨∇XZ,∇Y Z⟩

= [X,Y ]
(
⟨Z,Z⟩
Z

)
−XY

(
⟨Z,Z⟩
Z

)
+ Y

(
X

(
⟨Z,Z⟩
Z

))
= 0.

So g(R(X,Y )(Z +W ), Z +W ) = 0 and we conclure by bilinearity. ⋄

Remarque. The map R is a tensor. For X,Y, Z ∈X (M) and p ∈M , the quantity (R(X,Y )Z)p

only depend on the values X(p), Y (p) and Z(p). So we can define Rp(u, v)w for u, v, w ∈ TpM .

Proposition 2.11. Let X, Y and Z be three vector fields. Then
(∇ZR)(X,Y ) + (∇XR)(Y, Z) + (∇Y R)(Z,X) = 0.

Remarque. We have
(∇XR)(Y,Z)W = ∇X(R(Y,Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW.

Moreover, we have
(∇Xg)(Y,Z) = X(g(Y, Z))− g(∇XY,Z)− g(X,∇XZ) = 0.

Démonstration. We prove the identity on a basis. We choose X = ∂i, Y = ∂j and Z = ∂k. So
(∇ZR)(X,Y )W = [∇Z , R(X,Y )]W −R(∇ZX,Y )W −R(X,∇ZY )W

and then
(∗) = (∇ZR)(X,Y ) + (∇XR)(Y, Z) + (∇Y R)(Z,X)

= [∇Z , R(X,Y )]W + [∇X , R(Y, Z)]W + [∇Y , R(Z,X)]
−R(∇ZX,Y )W −R(X,∇ZY )W
−R(∇XY,Z)W −R(Y,∇XZ)W
−R(∇Y Z,X)W −R(Z,∇Y X)W

= [∇Z , R(X,Y )]W + [∇X , R(Y, Z)]W + [∇Y , R(Z,X)]
+R([X,Z], Y )W +R([Z, Y ], X)W +R([Y,X], Z)W.

But
[∇Z , R(X,Y )] = [∇Z , [∇X ,∇Y ]]− [∇Z ,∇[X,Y ]]

where the last term is null on U and so
(∗) = [∇Z , [∇X ,∇Y ]] = [∇X , [∇Y ,∇Z ]] + [∇Y , [∇Z ,∇Y ]] = 0. ⋄

Let p ∈M be a point and Π be a plane in TpM . For two tangent vectors v, w ∈ TpM not null
and not colinear, we define

Q(v, w) := ⟨v, v⟩⟨w,w⟩ − ⟨v, w⟩2.
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This gives a semi-riemannian metric. The plane Π is nondegenerate if
Q(v, w) ̸= 0, ∀v, w ∈ Π \ {0}, v ̸∝ w.

The quantity |Q(v, w)| is the volume of the parallelogram defined by the vectors v and w. If Π is
not degenerate, then we define the sectional curvature of Π bu

K(Π) := g(R(v, w)v, w)
Q(v, w) .

This definition does not depend on the choice of the vectors v and w.

Proposition 2.12. If K(Π) = 0 for all plane Π ⊂ TpM , then R = 0 at the point p.

Démonstration. 1. If v and w define a nondegenerate plane Π, then it suffices to apply the
implication K(Π) = 0⇒ ⟨R(v, w)v, w⟩ = 0.

2. If they define a degenerate plane, then v and w can be approximated by vectors which define
a nondegenerate plane. If v is null, let x be a tangent vector such that ⟨u, x⟩ ̸= 0. If not, let
x be the opposite of the causal type of v. Then Q(u, x) < 0. Let δ ̸= 0 a small real number
such that the vectors v and w+ δx define a nondegenerate plane. We assume δ = 1. So thank
to the first case, we get

⟨R(u,w)u, x⟩+ ⟨R(u, x)u,w⟩ = 0

which implies ⟨R(u,w)u, x⟩ = 0 for all x and so R(u,w)u = 0. Thus R(v + x,w)(v + x) = 0
and R(v, w)x+R(x,w)v = 0, so R(u,w)x = R(w, x)u. If we do u←→ w, we get R(w, u)x =
R(u, x)u. So we have R(u,w)x = R(w, x)u = R(x, v)w. But the first Bianchi identity gives

R(u,w)x+R(w, x)u+R(x, u)w = 0
and so R(u,w)x = 0. Thus R = 0.

⋄

Corollaire 2.13. If the sectional curvature of M is, at a point p, constant to c, then
∀x, y, z ∈ TpM, R(x, y)z = c(⟨y, z⟩x− ⟨x, z⟩y).

Définition 2.14. – The Ricci tensor is a (0, 2)-tensor obtainned by contraction of

Ric(X,Y ) :=
n∑

m=1
εmg(R(X,Em), Em)

where (Ei) is a orthonormal frame (whe g(Ei, Ej) = 0 if i ̸= j and g(Ei, Ei) = εi = ±1). This
defines a symmetric form.

– The scalar curvature is the function

scal :=
n∑

m=1
εm Ric(Em, Em).

Proposition 2.15. We have dscal = 2 div(Ric).

Démonstration. We set the notations.
– If f is a function, then df is a 1-form defined by df(X) := X(f).
– If T is a (0, 2)-tensor, then divT is a 1-form defined by divT (X) :=

∑n
m=1 εm∇EmT (Em, X).

– We work with a vector field X such that (∇Y X)p = 0 for Y ∈X (M).
– We work with an orthonormal basis (Em) such that (∇Y Em)p = 0 for Y ∈X (M).

At p, we have
dscal = X(scal)

=
∑
m,j

εmεjX(g(R(Em, Ej)Ej , Em))

=
∑
m,j

εmεj [g(∇X(R(Em, Ej)Ej), Em) + g(R(Em, Ej)Ej ,∇XEm)]
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=
∑
m,j

εmεjg((∇XR)(Em, Ej)Ej +R(∇XEm, Ej)Em +R(Em,∇XEi)Em +R(Em, Ej)∇XEm, Em)

=
∑
m,j

εmεjg((∇XR)(Em, Ej)Ej , Em)

=
∑
m,j

εmεj [−g((∇Ej
R)(X,Em)Ej , Em)− g((∇Em

R)(Ej , X)Ej , Em)]

= −
∑
m,j

εmεj [(∇EmR)(Ej , X,Ej , Em) +∇EjR(X,Em, Ej , Em)]

=
∑
m,j

εmεj [(∇Ej
R)(Ej , Em, Em, X) +∇EM

R(Em, Ej , Ej , X)]

= 2
∑
m,j

εmεj(∇Ej
R)(Ej , Em, Em, X)

= 2
∑
m,j

εmεj∇Ej (R(Ej , Em, Em, X)) because ∇g = 0

= 2
∑
m,j

εmεj∇Ej
(Ric(Ej , X))

= 2
∑
m,j

εmεj∇Ej
(Ric(X,Ej))

= 2
∑
m,j

εmεj(∇Ej
Ric)(Ej , X)

= 2 div(Ric)X. ⋄

Definition-proposition 2.16. A semi-riemannian manifold (M, g) is an Einstein manifold if there
exists a function f on M such that

Ricp = f(p)gp, ∀p ∈M. (∗)
If the dimension is greater than 3, then the function f is constant.

Démonstration. The idea is to take the divergence of the equation (∗). We have

div(fg)(X) =
∑

i

εi(∇Ei
(fg))(Ei, X)

=
∑

i

εi[Ei(fg(Ei, X))− fg(∇Ei
Ei, X)− fg(Ei,∇Ei

X)]

=
∑

i

εi[Ei(f)g(X,Ei) + f(Eig(X,Ei))− fg(∇Ei
Ei, X)− fg(Ei,∇Ei

X)]

=
∑

i

εiEi(f)g(X,Ei)

=
(∑

i

εig(X,Ei)Ei

)
(f)

= X(f) = df(X)

and so div(fg) = df . Taking the divergence of the equation (∗), we obtain div(Ric) = df and, by
the last proposition, we have df = dscal/2. Taking its trace, we get scal = (dimM)f . Then we have
scal = 2f + K for a constant K. As dimM ⩾ 2, the function scal is a constant and so does the
function f . ⋄
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2.4. Killing vector field

Définition 2.17. A Killing vector field is a vector field such that the Lie derivative of the matrix g
with respect to X is zero, that is

L X g = 0.

The associated flow of a vector field is the map

Ψ:

∣∣∣∣∣M × I −→M,

(p, t) 7−→ Ψt(p)

such that
Ψ(p, 0) = p et dΨ(t, p)

dt

∣∣∣∣
t=0

= X(p).

Proposition 2.18. A vector field X is a Killing vector field if and only if its flow is by isometries.

Démonstration. First, we show that

L X g = lim
t−→0

1
t
[Ψ∗

t g − g]. (1)

By the chain rule, one has

(L X g)(A,B) = X(g(A,B))− g(L X A,B)− g(A,L X B)
= X(g(A,B))− g([X,A], B)− g(A, [X,B])
= g(∇XA,B) + g(A,∇XB)− g(∇XA−∇AX,B)− g(A,∇XB −∇BX)
= g(∇AX,B) + g(∇BX,A).

So X is a Killing vector field if and only if

∀A,B, g(∇AX,B) = −g(A,∇BX).

But we have

(Ψ∗
t g − g)(A,B) = g(dΨt(A), dΨt(B))− g(A,B)

= g(dΨt(A), dΨt(B))− g(AΨt , BΨt) + g(AΨt , BΨt)− g(A,B).

On the one hand, with F = G ◦ α, α(t) = Ψt and G = g(A,B), we get

lim
t−→0

[g(AΨt , BΨt)− g(A,B)] = F ′(0)

= Xg(A,B).

On the other hand, with Ã = AΨt
and A←→ AΨt

, we have

g(dΨt(A), dΨt(B))− g(AΨt
, BΨt

) = g(Ã, B̃)− g(A,B)
= g(Ã−A, B̃) + g(A, B̃ −B)

with

lim
t−→0

g(Ã−A, B̃) = lim
t−→0

1
t
[g(dΨt(A)−AΨt

, dΨt(B))]

= lim
t−→0

1
t
g(dΨt(A− dΨ−t(AΨ(t))), dΨt(B))

= − lim
t−→0

1
t
g(dΨt(dΨ−t(AΨ(t))−A), dΨt(B))

= −g( lim
t−→0

1
t
[dΨt(dΨ−t(AΨ(t))−A)], lim

t−→0
dΨt(BΨt)).

But limt−→0 dΨt(BΨt) = B and

lim
t−→0

1
t
[dΨt(dΨ−t(AΨ(t))−A)] = −[A,X]. (∗)

If we conclude the equality (∗), then we will get the formula (1). Let proove the equality (∗).
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Let Ψ be the flow of a vector field V . We must prove

[V,W ] = lim
t−→0

1
t
[dΨ−t(WΨt

−W )] (2)

Let Fp(t) = dΨ−t(WΨt(p). The right-hand side of the equation (2) is exactly F ′
p(0). Assume Vp ̸= 0.

Let (xi) a system of local coordinates such that ∂/∂xi = V . Then locally

x1(Ψt(q)) = x1(q) + t et xj(Ψt(q)) = xj(q), j ⩾ 2

and
dΨt

(
∂

∂xi

)
=

∑
j

∂Ψj

∂xi

∂

∂xj
= ∂

∂xi
(Ψt).

Let W =
∑

i W
i ∂

∂xi
. Thus

Fp(t) =
∑

i

W i(Ψt(p))
∂

∂xi
.

and so

F ′
p(0) =

∑
i

d(W i ◦Ψt(p))
dt

∣∣∣∣
t=0

∂

∂xi

=
∑

i

Vp(W i) ∂

∂xi

=
∑

i

∂W i

∂x1 ∂i.

So

[V,W ] = (∂1,W )

= [∂1,
∑

W i∂i]

=
∑

∂1(W 1)∂i +W i[∂1, ∂i]

=
∑ ∂Xi

∂x1 ∂i = F ′
p(0). ⋄

Lemme 2.19. Let X be a Killing vector field on a connected manifold M such that, for all
point p ∈M , we have

X(p) = 0 et (∇X)p = 0.

Then X = 0 on M .

Démonstration. The set

A := {q ∈M | X(q) = 0 et (∇X)q = 0}

is closed and nonempty. To conclude, we show that this set is open. Take p ∈ A et Ψt the associated
flow.

Since X(p) = 0, we have Ψt(p) = 0 for all t. Indeed, the flow satisfies Ψt ◦Ψs = Ψt+s. Thus we
get

dΨt+s

dt

∣∣∣∣
t=0

(p) = dΨt

dt

∣∣∣∣
t=0

(p) = X(p) = 0

which concludes Ψt(p) = Ψ0(p) = p.
Let proves that dΨt : TpM −→ TpM is the identity. We have [X,Y ]p = (∇XY )p−(∇Y X)p. But

the points (∇XY )p depends only on X(p) = 0, so (∇XY )p = 0. So we have (X(Y )− Y (X))p = 0
and

dΨt(YΨt)− Yp

t
= 0.

Let Fp(t) := dΨt(YΨt
). Then F ′

p(0) = 0. With Y = dΨs(u), the function t 7−→ dΨ−t(YΨt
) has a

null derivative, so dΨt = 0. Finally, the flow acts by isométries, so the flow acts by the identity. ⋄
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Remarque. Klling vector fields form a Lie algebra of finite dimension because [L X ,L Y ] = L [X,Y ].
Moreover, the dimension is less then n(n+ 1)/2 where n = dimM .

Proposition 2.20. Let X be a Killing vector field and f := |X|2/2. Then
∆f = −Ric(X,X) + |∇X|2.

Démonstration. Only calculus. ⋄

Remarque. We compute grad f = −∇XX.

Définition 2.21. The divergence of a vector field X is
divV := tr(∇V ).

Théorème 2.22 (Bochores). Let M be a compact riemannian manifold with Ric(X,X) ⩽ 0 for
all X. Then a Killing vector field is parallel, that is ∇X = 0 on M . If Ric < 0, then there are no
nonzero Killing vector field.

Démonstration. But the Stokes theorem, we have∫
M

divV = 0.

Let f = |X|2/2. We get ∫
M

∇f = 0 =
∫

M

−Ric(Y,X) + |∇X|2

and so ∇X = 0. Moreover, if Ric < 0, then Ric(Y,X) = 0 for all Y and so X = 0. ⋄

Théorème 2.23 (Berger). Let M a compact riemannian manifold of even dimension with positive
sectional curvature. The any Killing vector field has a zero.

Démonstration. Let X be a vector field. Let f := |X|2/2. Then grad f = −∇XX. If X has no
zero, then f has a positive minimum at a point p ∈M . Then Hess f(p) ⩾ 0. Let V be a vector field.
Ten

Hess f(V, V ) := ⟨∇V (∇f), V ⟩ = ⟨−∇V∇XX,V ⟩
= ⟨R(V,X)X,V ⟩+ ⟨∇V X,∇V X⟩.

But B : X 7−→ ∇XX is skew symmetric, so (∇XX)(p) = (grad f)p = 0, so B admits λ = 0 as
an eigenvalue with X(p) as a eigenvector. As dimM is even, there exists another eigenvector V
corresponding to λ = 0. ⋄
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Chapitre 3

Geodesics

3.1 First definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1. First definitions

Définition 3.1. Let M be a differential manifold. Let I := ]−ε, ε[ ⊂ R be a interval centered at the
origin and γ : I −→M a curve. A vector field along the curve γ is a map X : I −→ TM such that

∀t ∈ I, X(t) ∈ Tγ(t)M.

Exemple. The map t 7−→ (γ(t), γ′(t)) is a vector field along the curve γ.

Proposition 3.2. Let M a semi-riemannian manifold et γ : I −→M a curve. Then there exists a
unique R-linear operator

D

dt : {vector fields along γ} −→ {vector fields along γ}

such that
– D

dt (fX) = df
dtX + f D

dtX ;
– If X(t) = Y (γ(t)), then D

dtX = (∇γY ) ◦ γ.

Démonstration. Let t0 ∈ I. Let (U, x) a chart on M and J ⊂ I an interval such that γ(J) ⊂ U .
Let Xi := ∂/∂xi. If Y is a vector field along γ, we have

Tγ(t)M ∋ Y (t) =
∑

j

αj(t)(Xj)γ(t).

With the first two conditions, we get
D

dtY =
∑

j

αj
D

dt (Xi ◦ γ) +
∑

k

α′
kXk(γ)

and, by the third condition, we obtain

γ̇t =
∑

γ̇iXi(◦γ)

and
D

dt (Xi ◦ γ) = (∇jXj) ◦ γ =
∑

i

γ̇i(∇XiXj) ◦ γ.

Put everything together
D

dtY =
∑

k

(
α′

k

∑
i,j

Γk
i,j,◦γγ

′
iαj

)
Xk ◦ γ.

Therefore the operator exists and is unique. ⋄

Remarque. The quantity (∇γ′X)(t) depends only on γ̇(t). We denote D
dtY by ∇γ̇Y .
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Définition 3.3. Let M be a semi-riemannian manifold and γ : I −→ M a curve of class C ∞. A
vector field X along the curve γ is parallel if ∇γ̇X = 0.

Définition 3.4. A curve γ is a geodesic if ∇γ̇ γ̇ = 0.

Théorème 3.5. Let M be a semi-riemannian manifold and γ : ]a, b[ −→M be a curve. Let t0 ∈ I
be a real number and X0 ∈ Tγ(t0)M a tangent vector. Then there exists a unique vector field Y
along the curve γ such that Y (t0) = X0.

Démonstration. Let (U, x) be a chart such that γ(t0) ∈ U . Let Xi := ∂/∂xi. Let J ⊂ I be a
interval such that γ(J) ⊂ U . We denote

γ̇(t) =
∑

γ̇i(t)Xi(γ(t)) et Y (t) =
∑

j

αj(t)Xj(γ(t)).

Then
DY

dt (t) =
∑

k

[
α̇k(t) +

∑
i,j

αj(t)γ̇i(t)Γk
i,j(γ(t))

]
Xk(γ(t))

and so
DY

dt (t) = 0 ⇐⇒ ∀k, α̇k(t) +
∑
i,j

αj(t)γ̇i(t)Γk
i,j(γ(t)) = 0. (∗)

Let admits the Picard-Lindelöf-Cauchy theorem :
Let f : I×U −→ Rn a continuous function which is Lipschitz in x. Then there exists

an unique solution x : I −→ Rn of the system
x′(t) = g(t, x(t)) et x(t0) = x0.

So there exists a solution to the equation (∗) for any initial data. One can extend Y (t) to I because
the coefficients in the equation (∗) are bounded for t ∈ I. ⋄

Lemme 3.6. Let X and Y be two parallel vector field along a curve γ. The the map
t 7−→ gγ(t)(X(t), Y (t))

a constant. For X = Y = γ̇, if γ is a geodesic, then g(γ̇, γ̇) = |γ|2 is constant.

Remarque. So causal type of geodesics is preserve on frame (Xi).

Théorème 3.7. Let M be a semi-riemannian manifold. Let p ∈M and v ∈ TpM . Then there exists
an open interval I and a unique geodesic γ : I −→M such that

γ(0) = p et γ̇(0) = v.

Démonstration. Let (U, x) be a chart such that γ(t0) ∈ U . Let Xi := ∂/∂xi. Let J ⊂ I be a
interval such that γ(J) ⊂ U . We write

γ̇ =
∑

i

γ̇i(Xi ◦ γ).

We have
∇γ̇ γ̇

∑
k

[
γ̈k(t) +

∑
i,j

γ̇j(t)γ̇j(t)Γk
i,j ◦ γ

]
Xk(γ(t)).

So γ is a geodesic if and only if

γ̈k(t) +
∑
i,j

γ̇j(t)γ̇j(t)Γk
i,j ◦ γ, ∀k

if on only if its components satisfy the systems of second order nonlinear ordinary differential
equation. Existence is given, for any initial data p and v, by the Picard-Lindelöf-Cauchy theorem. ⋄
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Chapitre 4

Examples

Exemple. The euclidean space Rn is a semi-riemannian manifold. The geodesics are straight lines.
Indeed, we have Γk

i,j = 0 and a path γ must verify the equation

γ̈k + Γk
i,j γ̇

iγ̇j = 0

Exemple. The sphere Sn is a riemannian manifold. Indeed, it is a differentiable manifolds by the
charts

πN :

∣∣∣∣∣∣∣
Sn \ {N} −→ Rn,

(x1, . . . , xn) 7−→
(

x1

1− xn+1
, . . . ,

xn

1− xn+1

)
and

πS :

∣∣∣∣∣∣∣
Sn \ {S} −→ Rn,

(x1, . . . , xn) 7−→
(

x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)
where the points N and S are the north and south poles. These two charts are bijective and we can
verify that there compositions are C ∞ maps.

We find the tangent spaces. Let p ∈ Sn. Take a curve γ : ]−ε, ε[ −→ Sn with γ(0) = p. Then we
have |γ(0)|2 = 1 and thus γ̇(0) ∈ TpSn. We can prove TpSn = {X ∈ Rn+1 | ⟨p,X⟩ = 0}.

We must equip the sphere with a metric. For X,Y ∈ TpSn, we set
gSn,p(X,Y ) := ⟨X,Y ⟩Rn+1 .

Then the tensor g is a metric on the sphere Sn. We get a riemannian manifold.
We must understand the Levi-Civita connection. We define the connection ∇ on Sn by

∇XY := (∂XY )tangent

and we will check that it is indeed the Levi-Civita connection. Here, the « tangent » is the projection
on the tangent space according the decomposition Rn+1 = Rp⊕TpSn and we denote ∂XY = dY (X).
First, we prove that

∇XY = ∂XY + ⟨X,Y ⟩p.

The normal part of ∂XY is ⟨∂XY, p⟩p. But ⟨Y, p⟩ = 0, so X⟨Y, p⟩ = 0 and ⟨∂XY, p⟩+ ⟨Y, ∂Y p⟩ = 0
and ∂Xp = dp(X) = X. So the normal part of ∂XY is −⟨X,Y ⟩p. Next, we observe that

⟨Z,∇XY ⟩ = ⟨Z, ∂XY ⟩.
By the Koszul formula, we have

2⟨Z, ∂XY ⟩ = X⟨Z, Y ⟩ − Z⟨X,Y ⟩
and

⟨Z, ∂XY ⟩ = ⟨Z,∇XY ⟩+ Y ⟨X,Y ⟩ − ⟨X, [Y,Z]⟩+ ⟨Y, [Z,X]⟩+ ⟨Z, [X,Y ]⟩.

So we get the Koszul formula. By the uniqueness, this is the Levi-Civita connection.
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Let us find the curvature. We have
−R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= ∇X(∂Y Z + ⟨Z, Y ⟩p)−∇Y (∂XZ + ⟨Z,X⟩p)− (∇[X,Y ]Z + ⟨Z, [X,Y ]⟩p)
= ∂X∂Y z − ∂Y ∂XZ − ∂[X,Y ]z) + (⟨X, ∂Y Z⟩p− ⟨Y, ∂XZ⟩p− ⟨[X,Y ], Z⟩p) + (∂X⟨Y,Z⟩p− ⟨X, ⟨Y,Z⟩p⟩p− ∂Y (⟨X,Z⟩p− ⟨Y, ⟨X,Z⟩p⟩p))
= ⟨Y, ∂Y Z⟩p− ⟨Y, ∂XZ⟩p− ⟨[X,Y ], Z⟩p+ ∂X(⟨Y,Z⟩p)− ∂Y (⟨X,Z⟩p).

But ∂X(⟨Y, Z⟩p) = ⟨∇XY, Z⟩p+ ⟨Y,∇XZ⟩p+ ⟨Y, Z⟩p and so
−R(X,Y )Z = ⟨∇XY,Z⟩p− ⟨∇Y X,Z⟩p− ⟨[X,Y ], Z⟩p+ ⟨Y,Z⟩p− ⟨X,Z⟩p

= ⟨Y,Z⟩X − ⟨X,Z⟩Y.
The sectional curvature is K = +1. The Ricci tensor is

Ric(X,Y ) = (n− 1)⟨X,Y ⟩
and the scalar curvature is

scal = n(n− 1).

Let us find the geodesics. Let γ a geodesics. Then ∇γ̇ γ̇ = 0. But
∇γ̇ γ̇ = (∂γ γ̇)

= γ̈tangent

= γ̈ − γ̈normal

= γ̈ − ⟨γ̈, γ⟩γ.
After calculus, we find that the geodesics are great circles.

Exemple. The hyperbolic space is Hm := R∗
+ ×Rm−1. Its tangent spaces are TpHm ≃ Rm. We

equip this manifold with the metric

g(X,Y ) = ⟨X,Y ⟩
x2

1
.

It is a riemannian manifold with sectional curvature equal to −1.
We can choose others models of the hyperbolic space such as

Hm = {(x0, . . . , xm) ∈ Rm+1 | x0 > 0, −x2
0 + x2

1 + · · ·+ x2
m = −1}.

Equipped with the induce metric, it is a riemannian manifold. An other model is the Poincaré
model

Dm := {x ∈ Rm | |x| < 1}

with the metric
g(X,Y ) = 4

(1− |x|2)2 ⟨X,Y ⟩.

The sectional curvature is also equal to −1.

Exemple. The curvature of Rm
1 is zero, its geodesics are straight lines.

Exemple. We set the pseudo-sphere Sn−1
ν ⊂ Rn

ν . The tangent space is
TpSn−1

ν = {X ∈ Rn | ⟨p,X⟩Rn
ν

= 0}.
The pseudo-spere equipped with the metric ⟨·, ·⟩Rn

ν
is a riemannian manifold of signature (ν, n−1−ν).

It is diffeomorphic to Rν × Sn−1−ν and it sectional curvature is +1. The geodesics are branches
of hyperboloids, straight line or periodic curves on ellipsoids : we can prove this by considering
different cases (the vectors to join are time, space or light like). More over, a curve γ is a geodesic
if and only iff the curves γ̈ and γ are parallel.
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Chapitre 5

Calculus of variations

Let M be a semi-Riemannian manifold. Let γ : I −→M be a curve. We recall that the set Aγ

is the set of maps Y : I −→ TM along the curve γ, that is such that
∀t ∈ I, Y (t) ∈ Tγ(t)M.

A such map Y can be write
Y (t) =

∑
j

αj(t)(Xj ◦ γ)(t)

on a chart (U, xi) with Xj := ∂/∂xj . The derivation for Aγ is
D

dtY (t) =
∑

k

(
α̇k(t) +

∑
i,j

Γk
ij(γ(t))γ̇i(t)αj(t)

)
Xk(γ(t)).

Facts.

1. For all X0 ∈ Tγ(0)M , there exists Y ∈ Aγ such that Y (0) = X0 and D
dtY = 0.

2. For all X0 ∈ TaM , there exists t0 > 0 and γ : [0, t0[ −→M such that γ(a) = X0 and D
dtγ = 0.

Such a γ is called a geodesic.
3. We also write D

dtY = Y ′ = Ẏ = ∇γ̇Y .
4. If γ is a geodesic, then

d
dt ⟨γ̇, γ̇⟩ = ⟨γ̈, γ̇⟩ = 0.

Définition 5.1. Let M be a semi-Riemannian manifold. A variation of a function α : [a, b] −→M
of class C ∞ is a map x : [a, b] × ]−δ, δ[ −→ M of class C ∞ with δ > 0 such that x(u, 0) = α(u).
The variation vector field is the vector field V such that

V (u) := ∂x

∂v
(u, 0).

The length of α is

L(α) :=
∫ b

a

|α′(s)|ds

where |·| =
√
|⟨·, ·⟩|. The length of V is

L(v) = Lx(v) =
∫ b

a

∣∣∣∣∂x∂u (s, v)
∣∣∣∣ ds.

We consider curves such that |γ′(t)| > 0, called regular curves of space-like. We denote ε the
sign of ⟨α′, α′⟩.

Lemme 5.2. If x is a variation of α with |α′| > 0, then

L′
x(0) = ε

∫ b

a

⟨ α
′(u)
|α′(u)| , V

′(u)⟩du.
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Démonstration. With xu = ∂x
∂u , we have

L(u) :=
∫ b

a

|xu(u, v)|du.

We have α′ = xu(u, 0)′. So for δ small enough, we have |xu(u, v)| > 0 for u ∈ ]−δ, δ[. So

L′(0) =
∫ b

a

d
du

∣∣∣∣
u=0
|xu|dt.

But we get
d

du |xu| =
1
2(ε⟨xu, xu⟩)−1/22ε⟨xu, xuv⟩ = ε⟨xu, xuv⟩

⟨xu, xu⟩
.

Take u = 0, we get xu(u, 0) = α′(0) and xv(u, 0) = V (u) and xuv(u, 0) = V ′(u). ⋄

Proposition 5.3 (first variation). Let α : [a, b] −→M be a continuous and smooth curve piece-wise
of constant speed c > 0 and of sign ε. Let x be a variation of α. Then

L′(0) = −ε
c

∫ b

a

⟨α′′, V ⟩du− ε

c

n∑
i=1
⟨∆α′(Ui), V (Ui)⟩+ ε

c
⟨α′, V ⟩|ba

with U1 < · · · < Uk are points where α is not C ∞ and
∆α′(Ui) = α′(U+

i )− α′(U−
i ) ∈ Tα(Ui)M.

Démonstration. We have
⟨ α

′

|α′|
, V ⟩ = 1

c
⟨α′, V ′⟩.

On ]Ui, Ui+1[, we have
⟨α′, V ′⟩ = d

du ⟨α
′, V ⟩ − ⟨α′′, V ⟩.

So ∫ Ui+1

Ui

⟨α′, V ′⟩du = ⟨α′, V ⟩Ui+1
Ui
−

∫ Ui+1

Ui

⟨α′′, V ⟩du.

We sum up to obtain the desired formula. ⋄

Corollaire 5.4. A piece-wise smooth curve α with constant speed c > 0 is a geodesic if and only if
the first variation of L is zero for any variation with fixed ends.

Remarque. Fixed ends imply that V is zero at a and b and
ε

2 ⟨α
′, V ⟩|ba = 0.

Démonstration. Suppose that α is a geodesic, that is α′′ = 0. Then α is smooth, so ∆α′(Ui) = 0.
In particular, we get V (a) = V (b) = 0 and so L′(0) = 0.

Suppose that L′(0) = 0. First we show that α is a geodesic on ]Ui, Ui+1[, that is α′′(t) = 0
for t ∈ ]Ui, Ui+1[. Let y be in Tα(t)M and f a smooth function defined on [a, b] with supp f ⊂
[t− δ, t+ δ] ⊂ ]Ui, Ui+1[ and f ∈ [0, 1] and f = 1 on ]t− δ/2, t+ δ/2[. Let Y be the vector field
obtained by parallel transport of y along α, that is D

dtY = 0 and Y (t) = 0. Let V := fY . Then
V (a) = V (b) = 0. Let exp be the exponential map, that is the map

expp : D ⊂ TpM −→M

with p ∈M where
expp(v) = B(1)

where B is the geodesic starting at p with initial speed v and where
D = {v ∈ TpM | B(1) exists}.

Let x(u, v) = expα(u)(vV (u)). Then x(u, v) is a variation of α with fixed ends. So L′(0) = 0 and
then

0 =
∫ b

a

⟨α′′, v⟩du
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=
∫ t+δ

t−δ

⟨α′′, fY ⟩.

This implies that
∀y ∈ Tγ(t)M, ⟨α′′(t), y⟩ = 0

and so α′′(t) = 0 on each ]Ui, Ui+1[.
If y ∈ Tα(Ui)M , let f have its support in ]Ui−1, Ui+1[ with f = 1 around Ui. So

0 = L′(0) = −ε
c
⟨∆α′(Ui), y⟩, ∀y

and so
∆α′(Ui) = 0. ⋄

We will compute L′′(0) if L′(0) = 0. Any vector field Y along α decomposes as Y = Y T + Y ⊥

where Y T = ε⟨Y, α′⟩α′ =: fα′ and Y ⊥ is orthogonal to α′. If α is a geodesic, then
Y ′ = f ′α′ + (Y ⊥)′.

Moreover, we have (Y ′)⊥ = (Y ⊥)′.

Théorème 5.5 (second variation). Let γ be a geodesic of constant speed c > 0 and of sign ε. If x
is a variation of γ, then

L′′(0) = ε

c

∫ b

a

⟨V ′⊥, V ′⊥⟩ − ⟨R(V, γ′)V, γ′⟩du+ ε

c
⟨γ′, A⟩|ba

where V (u) = xv(u, 0) and A(u) = xvv(u, 0).

Let Ω(p, q) be the space of smooth piece-wise curves from [a, b] to M starting at p and ending
at q. The tangent space to Ω(p, q) at α is the set TαΩ(p, q) of vector fields V along α with
V (a) = V (b) = 0. The index of σ ∈ Ω(p, q) is the bilinear symmetric form

Iσ : TσΩ −→ TσΩ
such that Iσ(V, V ) = Lx(σ) where x is a variation with fixed ends and variation vector V , that is

Iσ(V,W ) = ε

c

∫ b

a

⟨V ′⊥, V ′⊥⟩ − ⟨R(V, σ′)W,σ′⟩du.

We have Iσ(V,W ) = Iσ(V ⊥,W⊥).

Lemme 5.6. Let σ be a non-null geodesic with sign ε. Let M be a semi-Riemannian manifold with
index ν. Then

1. if Iσ is semi-definite positive, then ν = 0 or n ;
2. if Iσ is semi-definite negative, then ν = 1 or n− 1.

Définition 5.7. Let γ be a geodesic. A vector field Y along γ is called Jacobi field if
Y ′′ = R(Y, γ′)γ′.

If x is a variation of γ such that
∀v, u 7−→ x(u, v) is a geodesic,

then the variation vector u 7−→ ∂x
∂v (u, 0) is a Jacobi field.

For all v, w ∈ TpM , there exists an unique Jacobi field Y along γ such that Y (0) = v and
Y ′(0) = w.

Définition 5.8. Two points σ(a) and σ(b) with a ̸= b on a geodesic σ are conjugate if there exists
a nontrivial Jacobi field Y such that J(a) = J(b) = 0.

Then σ(a) and σ(b) are conjugate if and only if there exists a variation x of σ such that the map
u 7−→ x(u, v) is a geodesic, for all v, started from σ(a) such that ∂x

∂u (b, 0) = 0. This is equivalent
to the fact that the exponential map expp : TpM −→ M is singular at bσ′(0), that is there is a
tangent vector x to p at bσ′(0) such that d(expp)bσ′(0)(x) = 0.
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Lemme 5.9. Let σ be a geodesic such that σ⊥(s) ∈ Tσ(s)M is space-like. If ⟨R(v, σ′)v, σ′⟩ ⩽ 0 for
all v ⊥ σ′, then there is no conjugate points along σ.
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