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Differentiable manifolds

Let S be a topological connected Hausdorff and paracompact space. A chart is a homeomor-
phism & from and open subset of S in a open subset n(U) C R™. It can be written

¢(P) = (z'(p),...,2"(p), VpeU

where the maps 2% are called the coordinates functions of & and we will denote & = (x!,...,2").
Two charts ¢ and 1 of dimension n intersect in a smooth manner if the maps £ o' and no £~!
are of classe €.

An atlas is a collection of charts of dimension n such that

— for all point p € S, there exist an open subset U such that p € U ;

— two charts intersect in a smooth manner.

An atlas is complete if it contains all the charts of S which intersect in a smooth manner. Any atlas
admits a completion.

Définition 1.1. A differentiable manifold is a topological space equipped with a complete atlas.

Exemples. — The euclidean space is a differentiable manifold.
— The sphere 8 C R"t! is a differentiable manifold of dimension n.
— A cartesian product of differentiable manifolds is also a differentiable manifold.
Définition 1.2. Let M be a differentiable manifold. A function f: M — R is of class ¥ if, for

any chart (U,n), the maps
fontin ' (U) — R

is of class €*°.

The sum, product and inverse are of class €.

Définition 1.3. Let M and N be two differentiable manifolds. A map ¢: M — N is of class €
if, for any charts (U, ) of M and (V,7n) of N, the map

no¢o€t E(U) — (V).

is of class €*°.
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1.2. Tangent spaces and tangent bundle

Définition 1.4. Let p € M a point. Let F(M) be the space of functions of class € on M. A
tangent vector at the point p is a R-linear map v: F(M) — R satisfying the Leibniz rules

v(fg) = f(p)v(g) + g(p)u(f).
The space of all tangent vectors at the point p is the tangent space at the point p, denoted T, M.
Let (U, &) a chart, p € U a point and f € F(M) a function. We denote n = (z!,...,2™) and

2Ly = 22 )y,

where the notation u’ are the coordinates on R™. The map

9 :F(M) —R
Oa:ip

dilp =

are a tangent vector at the point p. The vectors 0;|, form a basis of T, M.

Définition 1.5. Let ¢: M — N be a map of class €. For all point p € M, we define the R-linear
map

d¢p2 TpM — T¢(p)N

by the equality
d¢p(v) =y € T¢(p)N

where
vg(g) = v(go9).
With coordinate (z!,...,2™) on M and (y*,...,y"), we have

‘_nwi
W) =3 =G P g

Remarque. If the maps ¢: M — N and ¢y: N — P are smooth, then the composition 1 o ¢ is
also a smooth map.

Définition 1.6. A wector field is a a map V which send each point p € M on a tangent vector
Vp € TpM.

If f e F(M), we denote V(f)(p) == V,(f).
Définition 1.7. If V(f) is of class € for all f € F(M), then V is of class €.

The sum of two vector fields is a vector field. The multiplication of a vector field by a function
is a vector field. The bracket of two vector fields V and W is defined by

[V, Wp(f) = Vo(W(f)) = Wp(V(f))-
It is skew-symmectric R-bilinear. It satisfies the Jacobi identity
(X, [V, Z))|+|Y,[Z,X]]+ [Z,[X,Y]] = 0.
We have
[fX,gY] = fglX, Y]+ f(X(9)Y —g(Y(f))X.

Exemple. We have [0;,0;] = 0.
Définition 1.8. A differentiable manifold P is a sub-manifold of M if

- PCcM,;

— the injection map j: P —— M is a map of class € ;

— it differential dj,,: TP — T}, M is injective for all p € P.
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Théoréme 1.9 (Whitney). Let M be a € °°-differentiable manifold of dimension n. Then there
exists an immersion M — R?".

The tangent bundle of M is TM = || ), TpyM. With TM = {(p,v) | p € M,v € T, M}, we
have a natural map m: TM — M which satisfies 77! (p) = T, M. We can show that the tangent

bundle is a manifold of dimension 2n. Indeed, let be (U,£) a chart on M with & = (z1,... 2™).
Let v € T, M. We can write
;0
v= Z v ot ,

with v’ € R. We consider

_|=7'(U) c T™M — R*",
T (p,u) — (' (7(p,u)),...,z"(7(p,u)), v}, ... ,0").
where v’ = v(2?) =: @%(u). This defines a atlas on TM. If (u',...,u?") are the coordinates on R?",
the transition functions are given by

u'éo pt =2t owoﬁ_l(a,b) =g _1(a),
i E o~ i e ox' _
u'oi =i o] 1(a7b)=zbkafyk(n '(a)).

L are of class €.

So the map £ o7~
Remarque. A vector field X: M — TM is a map of class ¥ such that 7 o X = Id,.
Remarque. In general, we have TM # M x R™. This is the case for S3.

Exemple. We consider the sphere S2. It is a manifold of dimension 2. We want to calculate it

tangent space at a point p € S2. Let : |—¢,e[ — S? be a curve of class € on S? with v(0) = p.
It acts on functions on S2. For a function f: S — R, we denote

d
§(0) fi= 2| (Fon(®)
t=0
We have
dy| .
E - = ’}/(0) S Tp82

and all tangent vector can be obtained this way. As |y| = 1, we find

S0P =0=2(.4(0))

Thus we conclude
T,8% = {X ¢ R*| (X,p) = 0}.

Exemples. Open subsets of R are differentiable manifolds. The half-plane H? := R x R’ has the
tangent space TpH2 = R? and so its tangle bundle is TH? = H? x R2.

Exemples. — The image of the map
]-1,1] — R?,
t— (L [t])
is a differentiable manifold but not a submanifold of R2.
— The map
R — R?,
t—s (t3,1%)

is differentiable but not an immersion.
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— The map
R — R?,

t— (£ — 4t, 1> — 4)
is differentiable and an immersion, but there is a self-intersection sot it is not an embedding.

— The map ¢t — (t,sin(1/t)) is an immersion with no self-intersecting point, but it is not an
embedding.

— The cone {xz +y? -2 = O} is not a submanifold of R? for connectivity reasons.

1.3. Tensors

Let V be a module over a ring K.

Définition 1.10. Let r,;s € N be integers with rs > 0. A tensor of type (r,s) is a K-multilinear
function
(V)" xV® — K.
We denote T™*(V) the set of tensors of type (r, s).
A tensor field is a tensor on the ring 2" (M) which denotes the set of vectors field on a

differentiable manifold M. The set 2 (M) is a module on the ring F(M) of functions on M. So a
tensor field of type (r, s) is a F(M)-linear map

A: Z*(M)" x Z(M)° — F(M).
Exemple. The map
‘%*(M) x 2 (M) —s F(M),
C:
(0,X) — 0(X)

is a tensor.

Counter-example. Let w € 2™*(M) a linear form. The map
. ‘%(M) x X (M) — F(M),
(X,Y) — X(w(Y))
is not a tensor field.
Remarque. When A € T"%(V) and B € T" ¥ (V), we can define the tensor A x B € T" 75" (V)
with the equality
ARBOY, .07 Xy, Xews) = A0, .07, Xy, X)AWG 0T X, Xags).

Proposition 1.11. Let p € M and A € T"*(M). Let 7' and 6" be 1-forms which agree on p. Let X
and X; be vector field which agree on p. Then
—1 =T = = I
A ,...,0 , X1,...,Xs)(p) = A0, ...,0", X1,..., X5)(p).
Thus we can define the map
Ap: (T,M)" x (T,M)* — R.

Démonstration. We show that, if 6% (p) = 0 or X;,(p) = 0, then A(#1,...,0", X1,...,X,)(p) = 0.
Let (U, (z',...,2™)) be a chart. Then we can write X;, = > X'9;. Let f be a bump function on U
with f(p) = 1. We have X, (p) = 0 < X%(p) =0,Vi and f2X}, is a vector field and we can write

2 X5, =2 FX'(f05)- So
FRPAGY, .07 Xy, X)) = ABY 0T X P X, X)

=> fatAOy,...,0", X1, .., £, ... X?)

and A(917"'79T,X17"‘7X5)(p):O' ¢
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Let (U, (z%,...,2™)) be a map. Let p € U. On U, we denote
AGey = A(da™ . datn, 9, -, 0s)
and we have

A=) AP0 @0j.@da” @ @ dat
The contraction of A on the indices 7 and j is the tensor field C}A of type (r — 1,5 — 1) which is
the composition of C' and the tensor

0, X) — A0, ...,0,....0", X1,...,X,..., X,).
The component of CiA are A" with m € {1,...,n}.
Définition 1.12. Let ¢: M — N a differentiable map. If A € T%$(N), we set
GAXL, ..., X)) = A(d(X1), .., db(X)).
The tensor ¢* A € T%*(M) is the pull-back of A by ¢.

Définition 1.13. A derivation of tensor is a R-linear map
D: T (M) — T™*(M)

such that
D(A® B)y=DA® B+ A® DB

and

D(CA) = C(DA).

For a function f € F(M) C T%%(M), we set f ® A= fA and we have D(fA) = fDA+ (Df)A.
The derivation D is a derivation of functions so there exists a V- € 2" (M) such that Df = V(f).
The chain rule becomes

D(ABY,...,0", X1,..., X)) = (DA)O,...,0", X1,...,X,)

+Y A0, DO, 0 X, X))+ (01,07, Xy, DX, X).
i=1 =1

Théoréme 1.14. Given a vector field V' and an R-linear map §: 2" (M) — 2 (M) such that
0(fX) =V(/)IW + f(6X),
there exists a unique derivation of tensors which equals to § on 2" (M) and V on F(M).
Définition 1.15. Let V € 2°(M). Then we set the derivation Ly as
Ly(f)=V(f) et  Ly(X):=[V,X]
for all f € F(M) and X € Z(M). It is called the Lie’s derivation.

Définition 1.16. Let V be a vector space. The index of a bilinear form b is the dimension of the
largest subspace W C V such that the restriction b|yw xw is negative definite.
A vector v € V' is null or isotropic if v # 0 and b(v,v) = 0.

Lemme 1.17. Let V and W be two linear spaces of the same dimension. Then they are equipped
with inner products with the same indices if and only if the exists a linear isometry V. — W.
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First definitions

Définition 2.1. A metric on a differentiable manifold M is a tensor field g on M of type (0,2)
which is symmetric, non-degenerate and with a constant index. A semi-riemannian manifold is a
manifold M equipped with a metric g.

In general, two different metrics on a same manifold M gives two different semi-riemannian
structures on M. If the index is zero, then we say that the semi-riemannian manifold (M, g) is
riemannian. If the index is one, then we will call it lorentzian.

In local coordinates (U, (z',...,z™)), we can write g = > g; j dz’ ® da? with g, ; = ¢(9i, 0j).
The matrix (g; ;) is invertible, the inverse will be denoted (g7).

Exemple. Let v < n be a natural integer. On the space R", we have the semi-riemannian
structure R} with the metric

v n
(u,v) = — Zu’wZ + Z v'w’.
i=1

i=v—+1

Définition 2.2. Let p € M. Let (M, g) be a semi-riemannian manifold. A tangent vector v € T, M
is

— space-like if v =0 or g(v,v) =0;

— null if v # 0 and g(v,v) =0;

— time-like if g(u,u) < 0.
Null vectors form the null cone.

If P C M is a submanifold and M is equipped with a riemannian metric g, the P is a riemannian

manifold. For example, the sphere S? admits a riemannian metric. But this is not always true for
semi-riemannian metrics.

Lemme 2.3. Let (M, gy ) and (N, gy) two semi-riemannian manifolds. Let 7: M x N — M
and o: M x N — N the two projections. Then the map g := 7*gn + 0¥ gn is a semi-riemannian
metric on M x N.

Définition 2.4. An isometry between two semi-riemannian manifolds (M, g) and (N,h) is a
diffeomorphism ¢: M — N which preserves the metrics, that is ¢*g = h or

Vp € M, Vu,w € TpM, h(p) (ddp(u), ddy(v)) = gp(u,v).
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Exemple. Let (u',...,u™) be the natural coordinates on R?. Let V and W two vector fields
on R". We denote W = >~ W9;. We define Dy W = dW (V) = > V(W")9,. This is the covariant
derivative of W with respect to V.

2.2. Connection and Levi-Civita connection

Définition 2.5. A connection on a manifold M is a map

D Z (M) x (M) — Z (M),
' (X,Y) — DxY
such that
— Dy W is F(M)-linear in V'
— Dy W is R-linear in W';
- Dy(fW) =V(f)W + fDyW.
Proposition 2.6. Let (M, g) be a semi-riemannian manifold. Let V' € 2" (M) a vector field. Let V*

be the 1-form defined by
V*(X) = g(V, X).

Then the map V —— V* is a F(M)-linear isomorphism.
Exemples. — We take the sphere S%. For a point p € $? and two tangent vectors X,Y € T,S?,

we can define
9p(X,Y) =(X,Y)

where the notation (-, -) is the standard inner product on R3. This gives a riemannian metric
on S2. If we replace the inner product (-,-) by another semi-riemannian metric on R?, then
this metric is no longer semi-riemannian in general.

— If g is a riemannian metric, then a another riemannian metric is given by
(X,Y) = el Pg,(a,y)
for a smooth function f € €°(M,R).

— There exists three vector fields E; on S® which form a orthonormal family where the semi-
riemannian is the same as the first example. Then we can define a new semi-riemannian
metric by

o (E;,E;) =0 forall i #j;
o |Ei|> =—1and |Ey|? = |E3]? = 1.
— On the half-plane H?, we can define the metric
. da? + dy?
= " .
Question. When can we equip M with a semi-riemannian metric ? It is not always the case for a

semi-riemannian metric with strictly positive index. But it is always the cases for a riemannian
metric. There is two ways to do that :

— by using the Withney’s theorem : the exists an immersion ¢: M — R" for a large enough
integer N and we take the pullback of the euclidean matric on RY, that is

9p(X,Y) = (dep(X), dip(Y));

— if (U;,2%) are an atlas of M, we define

Gp = Z ;i (-, )me.
i

H Théoréme 2.7. Let (M, g) be a semi-riemannian manifold. Then there exists a unique connection D
such that, for all vector fields V and W, we have



2.3.

CHAPITRE 2. SEMI-RIEMANNIAN MANIFOLDS 9

— [V,W]=DyW — Dy V;

- Xg(V,W) = g(DxV, W)+ g(V, DxW)
Moreover, the connection D is characterized by the Koszul formula

29(DyW, X) = V(g(X, W)) + W(g(X,V)) = Xg(V, W)
—g(V,[W, X]) + g(W, [X, V]) + (X, [V, W]).

It is called the Lewvi-Civita connection.
Démonstration. Let D be a connection satisfying these two points. In the right-hand side of the
Koszul formula, using the two points, we obtain 2g(Dy W, X). This proves the uniqueness because
of the one-to-one correspondance between vector fields and 1-forms.

Let proves the existence. Let F(V, W, X) the right-hand side of the Koszul formula. Then if we

take two vector fields V' and W, then the map F(V,W,.): 2 (M) — R is F(M)-linear. So it is
a 1-form. Thus there exists a unique vector field Dy W such that

This show the Koszul formula and that the map D is a connection. With this formula, we can prove

the two points. o

Notation. We will write V for the Levi-Civita connection. With this notation and g(-,-) = (-, ),
the two points of the theorem are

X(Y,Z) = (VXZ,Y) + (VxY, Z),
[X,Y]=VxY — VyX.

Définition 2.8. The Christoffel symbols for the chart (U, z?) are the functions on U given by
n
Do, (0;) =Y T¥ 0k
k=1

Recall that [8;,0;] = 0 = Dy, (8;) — Do, (;) by the Schwarz theorem, so I’} ; = T'¥ ;. Moreover,
it W =73 WJd; on U, then

Do, (W) = > (0:;(W7)0; + WY "T¥,0%)

J k
=D (@:(WI) + > WITE)ox
k J

By Koszul formula, we have

1 0905  Ogei 09
| k£ o ot I8 )
) ;g ozt + oxJ ozt

Exemple. On R}, we have Ff’j =0.

Curvature and Ricci tensor
Definition-proposition 2.9. Let (M, g) a semi-riemannian manifold and V its Levi-Civita connection.
The the map
R. Z(M)x (M) x Z (M) — Z(M)
’ (X,Y,Z2)— R(X,Y)Z = V[X7y]Z—VvaZ+VyVXZ

is a tensor field of type (1,3), called the riemannian curvature.

There is a version of type (0,4) given by
R(X,)Y,Z, W) = g(R(X,Y)Z,W).
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Démonstration. We need to check that R(fX,Y)Z = fR(X,Y)Z and R(X,Y)(fZ) = fR(X,Y)Z.
We have [fX,Y] = fXY —-Y(f)X — fY X and
Viixy)Z = fVxVyZ

which prove the formula. o

Proposition 2.10. We have the following properties :
. R(X,)Y)Z =—-R(X,Y)Z;

- 9(R(X,Y)Z, W) = —g(R(X, Y)W, Z);

. RIX,)Y)Z+R(Y,Z) X+ R(Z,X)Y =0;

. g(RX,YYZ, W) =g(R(Z,W)X,Y).

B~ W N R

Démonstration. 2. With g(-,-) = (-, -), one has
g(R(X, Y)Z, Z) = <V[X7y]Z —VxVyZ+VyVxZ, Z>
=(Vixv14,2) —(VxVvZ,Z) + (VyVxZ,Z)

_ [X,Y]<<Z,Z>

e (E2) - xr(Z2) v(x(Z2)) <o

So g(R(X,Y)(Z+W),Z + W) =0 and we conclure by bilinearity. o

> —X(VvZ,Z)+(VNyZ,NxZY+Y(NxZ,Z)— (NxZ,VyZ)

Remarque. The map R is a tensor. For X,Y,Z € 2 (M) and p € M, the quantity (R(X,Y)Z),
only depend on the values X (p), Y (p) and Z(p). So we can define R, (u,v)w for u,v,w € T,M.

Proposition 2.11. Let X, Y and Z be three vector fields. Then
(VzR)(X,Y) + (VxR)(Y, Z) + (Vy R)(Z, X) = 0.

Remarque. We have
(VxR)(Y,Z)W =Vx(R(Y,Z)W) — R(VxY,Z)W — R(Y,VxZ)W — R(Y, Z)V xW.
Moreover, we have
(Vxg)(Y, Z) = X (9(Y, Z)) — g(VxY,Z) — g(X,Vx Z) = 0.

Démonstration. We prove the identity on a basis. We choose X = 0;, Y = 0; and Z = 0. So
(VZR)(X, Y)W = [Vz, RX,Y)]W — R(VzX, Y)W — R(X,VzY)W
and then
() = (VZR)(X,Y) + (Vx R)(Y, Z) + (Vy R)(Z, X)
=[Vz, RX, Y)W+ [Vx,R(Y, Z2)]W + [Vy, R(Z, X)]
— R(VzX, Y)W - R(X,VzY)W
— R(VxY,Z)W — R(Y,VxZ)W
—R(VyZ, X)W — R(Z,Vy X)W
=[Vz, RX, Y)W+ [Vx,R(Y, Z2)]W + [Vy, R(Z, X)]
+ R([X,Z],Y)W + R([Z,Y], X)W + R(]Y, X], Z)W.
But
Vz, R(X,Y)] = [Vz,[Vx,Vy]] = [Vz,V[xy]
where the last term is null on U and so
() =[Vz, [Vx,Vy]] = [Vx, [Vy,Vz]] + [Vy,[Vz, Vy]] = 0. o

Let p € M be a point and II be a plane in T, M. For two tangent vectors v, w € T, M not null
and not colinear, we define

Q(v,w) = (v,v)(w,w) — (v, w)>.



CHAPITRE 2. SEMI-RIEMANNIAN MANIFOLDS 11

This gives a semi-riemannian metric. The plane II is nondegenerate if
Q(v,w) # 0, Yo, w € I\ {0}, v
The quantity |Q(v,w)| is the volume of the parallelogram defined by the vectors v and w. If II is
not degenerate, then we define the sectional curvature of II bu
9(R(v, w)v, w)
Qv,w)

This definition does not depend on the choice of the vectors v and w.

K(I) =

Proposition 2.12. If K (II) = 0 for all plane II C T, M, then R = 0 at the point p.

Démonstration. 1. If v and w define a nondegenerate plane II, then it suffices to apply the
implication K(IT) =0 = (R(v,w)v,w) = 0.
2. If they define a degenerate plane, then v and w can be approximated by vectors which define
a nondegenerate plane. If v is null, let « be a tangent vector such that (u,z) # 0. If not, let
x be the opposite of the causal type of v. Then Q(u,z) < 0. Let 6 # 0 a small real number
such that the vectors v and w + dx define a nondegenerate plane. We assume § = 1. So thank
to the first case, we get
(R(u, w)u, z) + (R(u, z)u, w) =0

which implies (R(u,w)u,z) = 0 for all z and so R(u, w)u = 0. Thus R(v+ z,w)(v+2) =0
and R(v,w)z + R(z,w)v =0, so R(u,w)r = R(w, z)u. If we do u +— w, we get R(w,u)r =
R(u, z)u. So we have R(u,w)r = R(w,z)u = R(z,v)w. But the first Bianchi identity gives

R(u,w)r + R(w,x)u + R(x,u)w =0
and so R(u,w)zr = 0. Thus R = 0.

Corollaire 2.13. If the sectional curvature of M is, at a point p, constant to ¢, then

Va,y,z € TpM, R(z,y)z = c({y, )z — (z, 2)y).

Définition 2.14. — The Ricci tensor is a (0, 2)-tensor obtainned by contraction of
Ric(X,Y) Z emg(R(X, Ep), E)
m=1

where (E;) is a orthonormal frame (whe g(E;, E;) = 0if i # j and g(E;, E;) = &; = £1). This
defines a symmetric form.

— The scalar curvature is the function

scal = Z em Ric(Ep,, Ep).

m=1

Proposition 2.15. We have dscal = 2 div(Ric).

Démonstration. We set the notations.
— If f is a function, then df is a 1-form defined by df (X) = X (f).

If T is a (0, 2)-tensor, then div7 is a 1-form defined by divT(X) :=>"" _ Vg, T(En, X).
— We work with a vector field X such that (VyX), =0 for Y € Z'(M).
— We work with an orthonormal basis (E,,) such that (Vy Ey,), =0 for Y € 2 (M).

At p, we have

dscal = X (scal)
_nggj R(Epm, E;)E;, Em))

—Zsmeg (Vx(R(Em, E})E;), En) + g(R(Eny, Ej)E;, V x Ep,)]

m,j
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= emeig(VxR)(Em, E;)E; + R(Vx Epn, Bj) Epy + R(Epy, Vx Ei) Epy + R(Epy, Ej)V x B, Eny)

m,j

= emeig(VxR)(Em, E;)E;, Ey)
= 3 enei (T, RYX, By, Br) — 0((V,, B)(;, X) Iy, By

==Y emeil(Ve, R)E), X, Ej, En) + Vi, R(X, B, Ej, Ep)|

m,j

=" emeil(Ve, R)(Ej, Ep, B, X) + Vi, R(Em, Ej, E;, X)]

m,j

=2 eme;(Vi,R)(Ej, Em, B, X)
m’j
=23 602,V (R(Ej, Bs B, X)) because Vg = 0
2J

=2 Z em&; Ve, (Ric(Ej;, X))

m,j

=2 ene; Vi, (Rie(X, E)))

m,j

=2 eme;(V, Ric)(E;, X)

m,j

= 2div(Ric) X.

Definition-proposition 2.16. A semi-riemannian manifold (M, g) is an Einstein manifold if there
exists a function f on M such that

Ric, = f(p)gp,  Ype€ M. (*)

If the dimension is greater than 3, then the function f is constant.

Démonstration. The idea is to take the divergence of the equation (x). We have

div(fg)(X) = Zgi(in(fg))(EivX)
= ié‘i[Ei(fg(Ei,X)) — [9(VE, Ei, X) — fg(Ei, Vg X))
— ifi[Ei(f>g(X7 E;) + f(Eig(X, Ei)) — f9(VE,Ei, X) — f9(Ei, Vg, X)]
= isiEi(f)g(X, E;)
= (Y eo(x. E)E) ()
= X(lf) = df(X)

and so div(fg) = df. Taking the divergence of the equation (x), we obtain div(Ric) = df and, by
the last proposition, we have df = dscal/2. Taking its trace, we get scal = (dim M) f. Then we have
scal = 2f + K for a constant K. As dim M > 2, the function scal is a constant and so does the
function f. o
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2.4. Killing vector field

Définition 2.17. A Killing vector field is a vector field such that the Lie derivative of the matrix g
with respect to X is zero, that is
.,%X g = 0.

The associated flow of a vector field is the map
M x T — M,
| (p,t) — i (p)
such that
U(p,0)=p et

Proposition 2.18. A vector field X is a Killing vector field if and only if its flow is by isometries.

Démonstration. First, we show that
o1
ZLxg= lim —[Uig—g]. (1)
t—0 ¢
By the chain rule, one has

(Zx9)(A,B) = ( (A,B)) —9(Zx A,B) — g(A, Zx B)
= X(9(A,B)) — g([X, A], B) — g(A, [X, B])
_Q(VXA B)+g(A,VxB) —g(VxA—-VaX,B) - g(A,VxB - VpX)
=g(VaX,B)+g(VpX,A).
So X is a Killing vector field if and only if
VA, B, g(VaX,B)=—g(A, VpX).
But we have
(Uig — 9)(A, B) = g(d¥(A),d¥(B)) — g(A, B)
= g(d¥(A),dV(B)) — g(Aw,, By,) + 9(Aw,, By,) — g(A, B).
On the one hand, with F = G o a, a(t) = ¥; and G = g(A, B), we get
Jim [9(Aw,, Bu,) — 9(A, B)] = F'(0)
= Xg(A, B).
On the other hand, with A = Ay, and A «+— Ay,, we have
9(d¥,(A),d¥,(B)) - g(Av,. By,) = 9(A, B) — g(A, B)
=g(A—A,B)+g(A,B-B)
with

lim g(A A, B) = lim 1[g(d\I/,g(A) — Ay,,dU(B))]
t—0 t—0 ¢ ’
. 1
= th_r}n() Zg(d\llt(A —dV_(Ag@))),dV(B))
1
= - lm *g(dq’t(d‘l’—t(A\p(t)) — A),d¥(B))
— —g(lim L, (@0 (Ag) - A fim a,(Bu,)).
But lim;_,¢ d¥;(Byg,) = B and
thm [d\I!t(d\I/ t(Apw)) — A)] = —[A4, X]. (%)
—0

If we conclude the equality (), then we will get the formula (1). Let proove the equality ().
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Let ¥ be the flow of a vector field V. We must prove
1
V,W]= lim *[d\Il_t<W\pt - W) (2)

Let F(t) = dV_(Wy,(p). The right-hand side of the equation (2) is exactly F}(0). Assume V}, # 0.
Let (z;) a system of local coordinates such that 0/0x; = V. Then locally

o (Ue(q)) =a'(q)+t et 2/ (W(g) =a'(q),  j>2

owJ 0
(63:1) Z ox; 8% Oz 7, (20)-

and

Let W =3, VVZ . Thus

i 8
ZW ilp 8:81
and so
Lon d(W?o W, (p)) 0
Fp(O) n Z de t=0 al'z
i 0
=2 VW >%
Z axl
So
[V, W] = (01, W)

= 5172Wiai

fZal 18, + W[y, 8]

_Z 8—F’) o

Lemme 2.19. Let X be a Killing vector field on a connected manifold M such that, for all
point p € M, we have
X(p)=0 et (VX), =

Then X =0 on M.

Démonstration. The set
A={qeM|X(q) =0et (VX), =0}

is closed and nonempty. To conclude, we show that this set is open. Take p € A et U, the associated
flow.
Since X (p) = 0, we have U;(p) = 0 for all ¢. Indeed, the flow satisfies ¥; o U, = W, .. Thus we
get
d\I’t+s
dt

which concludes ¥y (p) = ¥o(p) = p.

Let proves that d¥;: T,M — T, M is the identity. We have [X,Y], = (VxY),—(VyX),. But
the points (VxY'), depends only on X (p) =0, so (VxY), = 0. So we have (X(Y)-Y (X)), =0
and

o (p) = ar

d\Ijt (Y‘I’r) — YP
t

Let Fy(t) = dV¥;(Yy,). Then F,(0) = 0. With Y = dV¥,(u), the function ¢ — d¥_4(Yy,) has a
null derivative, so d¥; = 0. Finally, the flow acts by isométries, so the flow acts by the identity. ¢

=0.
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Remarque. Klling vector fields form a Lie algebra of finite dimension because [ x, £y| = Z|x y]-
Moreover, the dimension is less then n(n + 1)/2 where n = dim M.

Proposition 2.20. Let X be a Killing vector field and f := | X|?/2. Then
Af = —Ric(X, X) + |VX|2

Démonstration. Only calculus. o

Remarque. We compute grad f = -V xX.
Définition 2.21. The divergence of a vector field X is
divV = tr(VV).

Théoréme 2.22 (Bochores). Let M be a compact riemannian manifold with Ric(X, X) < 0 for
all X. Then a Killing vector field is parallel, that is VX = 0 on M. If Ric < 0, then there are no
nonzero Killing vector field.

Démonstration. But the Stokes theorem, we have

/ divV =0.
M

/M Vf=0= /M —Ric(Y, X) + |[VX|?

Let f =|X]?/2. We get

and so VX = 0. Moreover, if Ric < 0, then Ric(Y, X) =0 for all Y and so X = 0. o

Théoréme 2.23 (Berger). Let M a compact riemannian manifold of even dimension with positive
sectional curvature. The any Killing vector field has a zero.

Démonstration. Let X be a vector field. Let f := |X|?/2. Then grad f = —VxX. If X has no
zero, then f has a positive minimum at a point p € M. Then Hess f(p) > 0. Let V be a vector field.
Ten
Hess f(V,V) == (Vy(V[),V) = (=VyVx X, V)
=(R(V, X)X, V) + (Vv X,VyX).
But B: X — VxX is skew symmetric, so (VxX)(p) = (grad f), = 0, so B admits A = 0 as

an eigenvalue with X (p) as a eigenvector. As dim M is even, there exists another eigenvector V
corresponding to A = 0. o
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Chapitre 3

Geodesics

3.1 First definitions . . . . . ... . 17
First definitions
Définition 3.1. Let M be a differential manifold. Let I :=]—e,e[ C R be a interval centered at the

origin and v: I — M a curve. A wector field along the curve v is a map X : I — TM such that
Vtel, X(t)ET,y(t)M.

Exemple. The map ¢t — (v(¢),7/(t)) is a vector field along the curve +.

Proposition 3.2. Let M a semi-riemannian manifold et v: I — M a curve. Then there exists a
unique R-linear operator

D
eTE {vector fields along v} — {vector fields along ~}
such that
- B(fx)= X +/BX:
~ If X(t) =Y (y(t)), then £X = (V,Y)on.
Démonstration. Let tg € I. Let (U,x) a chart on M and J C I an interval such that v(J) C U.
Let X; :=90/0x;. If Y is a vector field along -, we have

TyM 3 Y (1) =3 i ()(X))0).

With the first two conditions, we get
D D ,
and, by the third condition, we obtain
Ve = Z’%‘Xi(o’Y)

and
D .
&0 = (ViXj)oy= D AV, Xj) 0.

Put everything together

D / k !
@l = Zk:(% ZFim%aj)Xk 0.

4,3

Therefore the operator exists and is unique. o

Remarque. The quantity (V. X)(t) depends only on #(t). We denote %Y by VY.



18 3.1. FIRST DEFINITIONS
Définition 3.3. Let M be a semi-riemannian manifold and ~: I — M a curve of class €. A
vector field X along the curve v is parallel if V45X = 0.

Définition 3.4. A curve v is a geodesic if V4% = 0.

Théoréme 3.5. Let M be a semi-riemannian manifold and +: Ja,b] — M be a curve. Let tg € T
be a real number and Xo € T,(;,)M a tangent vector. Then there exists a unique vector field Y’
along the curve « such that Y () = Xo.

Démonstration. Let (U,x) be a chart such that v(¢9) € U. Let X; := 9/0z;. Let J C I be a
interval such that v(J) C U. We denote

() =Y A OXi(v(1) et Wﬂ=§:w@ﬂﬂ%m-

Then
DL (1) = X o) + 3 oy (01Tt (r(0)] X (r()
k 9,
and so DY
EE0 =0 = VE ) + Y ag(0RT () = 0. ()

Let admits the Picard-Lindel6f-Cauchy theorem :

Let f: I xU — R"™ a continuous function which is Lipschitz in x. Then there exists
an unique solution x: I —> R™ of the system

z'(t) = g(t, x(t)) et z(to) = o.

So there exists a solution to the equation (x) for any initial data. One can extend Y (t) to I because
the coefficients in the equation (%) are bounded for ¢ € I. o

Lemme 3.6. Let X and Y be two parallel vector field along a curve . The the map
t— gy (X(1),Y (1))

a constant. For X =Y = 4, if v is a geodesic, then g(¥,%) = |y|? is constant.

Remarque. So causal type of geodesics is preserve on frame (X;).

Théoréme 3.7. Let M be a semi-riemannian manifold. Let p € M and v € T, M. Then there exists
an open interval I and a unique geodesic v: I — M such that

¥0)=p et F(0)=o.

Démonstration. Let (U,z) be a chart such that v(tg) € U. Let X; == 9/0z;. Let J C I be a
interval such that v(J) C U. We write

¥=3 4ilXion).
We have
Vi 0[50 + D2 33O 7] Xe(r(0).
k i,
So v is a geodesic if and only if

() + > 4050 0, Yk
‘7j

if on only if its components satisfy the systems of second order nonlinear ordinary differential
equation. Existence is given, for any initial data p and v, by the Picard-Lindel6f-Cauchy theorem. ¢
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Chapitre 4
Examples

Exemple. The euclidean space R" is a semi-riemannian manifold. The geodesics are straight lines.
Indeed, we have I‘f ; =0 and a path v must verify the equation

¥+ T =0

Exemple. The sphere S” is a riemannian manifold. Indeed, it is a differentiable manifolds by the

charts
S"\{N} — R",

TN : T Tn
(56'1,...7.’13n)b—>< gy )
1*xn+1 1*xn+1
and
§"\ {S} — R",

TS -

5 (m1,...,xn)|—> 1 gy In
1+1'n+1 1+1'n+1

where the points N and S are the north and south poles. These two charts are bijective and we can
verify that there compositions are > maps.
We find the tangent spaces. Let p € S™. Take a curve y: |—¢,e[ — S™ with 7(0) = p. Then we
have |y(0)|? =1 and thus 4(0) € T,S™. We can prove T,S" = {X € R"! | (p, X) = 0}.
We must equip the sphere with a metric. For X,Y € T,8", we set
gsn p(X,Y) = (X, Y)gn+1.

Then the tensor g is a metric on the sphere S™. We get a riemannian manifold.
We must understand the Levi-Civita connection. We define the connection V on S™ by

VXY — (axy)tangcnt

and we will check that it is indeed the Levi-Civita connection. Here, the « tangent » is the projection
on the tangent space according the decomposition R"*! = Rp&T,S™ and we denote OxY = dY (X).
First, we prove that

VxY =0xY + <X, Y)p.

The normal part of OxY is (OxY,p)p. But (Y,p) =0, so X(Y,p) =0 and (OxY,p) + (Y,dyp) =0
and Oxp = dp(X) = X. So the normal part of dxY is —(X,Y)p. Next, we observe that

(Z,VxY) =(Z,0xY).
By the Koszul formula, we have
2(Z,0xY)=X(Z,Y) - Z(X,Y)

and
(Z,0xY) =(Z,VxY)+Y(X,Y) — (X, [Y, Z]) + (Y, [Z, X]) + (Z, [X,Y]).

So we get the Koszul formula. By the uniqueness, this is the Levi-Civita connection.
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Let us find the curvature. We have
—R(X,Y)Z =VxVyZ -VyVxZ -Vixyv|Z
=Vx(0vZ +(Z,Y)p) —Vy(0OxZ +(Z,X)p) — (Vix,y1Z +(Z,[X,Y])p)
=0x0yz —0yOxZ — Jix,v)2) + ({(X,0v Z)p — (Y, 0x Z)p — ([X, Y], Z)p) + (Ox (Y, Z)p — (X, (Y, Z)p)p —
=Y, 0v Z)p = (Y, 0x Z)p — ([X, Y], Z)p + Ox ((Y, Z)p) — Oy (X, Z)p).
But Ox((Y, Z)p) = (VxY,Z)p+(Y,VxZ)p+ (Y, Z)p and so
—R(X,Y)Z = (VxY, Z)p— (Vy X, Z)p = ([X, Y], Z)p+ (Y, Z)p — (X, Z)p
=Y, 2)X — (X, Z)}Y.
The sectional curvature is K = +1. The Ricci tensor is
Ric(X,Y) = (n—1){X,Y)
and the scalar curvature is
scal = n(n — 1).
Let us find the geodesics. Let v a geodesics. Then V54 = 0. But
Vg = (av"Y)
- tangent

=7
e normal

=5-7%
=5 H -

After calculus, we find that the geodesics are great circles.

Exemple. The hyperbolic space is H” = R} X R™~!. Its tangent spaces are T,H™ ~ R™. We
equip this manifold with the metric
X,Y)

9(X,Y) = < z%

It is a riemannian manifold with sectional curvature equal to —1.
We can choose others models of the hyperbolic space such as

H" = {(20,...,2m) ER™ |29 >0, —23 + 27 +--- + 22, = —1}.

Equipped with the induce metric, it is a riemannian manifold. An other model is the Poincaré
model

D" ={zeR™||z| <1}
with the metric 4

YY) e

X,Y).
The sectional curvature is also equal to —1.
Exemple. The curvature of RY" is zero, its geodesics are straight lines.

Exemple. We set the pseudo-sphere S?~1 C R”. The tangent space is
T8~ ={X €R" | (p, X)r; = 0}.

The pseudo-spere equipped with the metric (-, -)r» is a riemannian manifold of signature (v,n—1-v).
It is diffeomorphic to R¥ x S”~'~ and it sectional curvature is +1. The geodesics are branches
of hyperboloids, straight line or periodic curves on ellipsoids : we can prove this by considering
different cases (the vectors to join are time, space or light like). More over, a curve v is a geodesic
if and only iff the curves 4 and ~ are parallel.
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Chapitre 5

Calculus of variations

Let M be a semi-Riemannian manifold. Let v: I — M be a curve. We recall that the set A,
is the set of maps Y : I — TM along the curve ~, that is such that

vVtel, Y(t) S T'y(t)M

- S0,
on a chart (U, z%) with X; :== 8/0x7. The derivation for A, is

2y ()= 30 () + X TE G005 (1) Xelr(0).
k ¥

A such map Y can be write

Facts.
1. For all Xy € T, )M, there exists Y € A, such that Y'(0) = Xy and LY =0.

2. For all Xy € T, M, there exists ty > 0 and v: [0, to[ — M such that 7( ) = Xo and %7 =0.
Such a « is called a geodesic.

3. We also write %Y =Y =Y =V,Y.

4. If v is a geodesic, then

d
L s 4y = (5.4 = 0.
G =617
Définition 5.1. Let M be a semi-Riemannian manifold. A variation of a function «: [a,b] — M

of class ¥ is a map z: [a,b] x |=d,0] — M of class € with ¢ > 0 such that z(u,0) = a(u).
The variation vector field is the vector field V' such that

Ox
The length of « is
b
— [ la'Gs)las
where |-| = v/|(,-)|- The length of V is
L(v) = Ly(v) = gi(s v)| ds.

We consider curves such that |y/(t)| > 0, called regular curves of space-like. We denote e the
sign of (¢, ).

Lemme 5.2. If z is a variation of a with |o/| > 0, then

/ - b O/(u) () du
L) = = [ (5 Vi) du.
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Démonstration. With x,, = %, we have

b
L(uw) ::/ |y (w0, v)| du.

We have o/ = z,(u,0)’. So for § small enough, we have |z, (u,v)| > 0 for u € ]—4,d[. So

d
o= [ = Wl dt.
O=[ &l _ =

But we get

d 1 ~1/2 E(Tys o)

7 |bul = 3 ws Lu 2 wybuv) = 7\ -

T ] = e ) 2 ) = ST
Take u = 0, we get z,(u,0) = a’(0) and x,(u,0) = V(u) and z,,(u,0) = V'(u). o

Proposition 5.3 (first variation). Let a: [a,b] — M be a continuous and smooth curve piece-wise
of constant speed ¢ > 0 and of sign €. Let x be a variation of . Then

b n
/ _ ¢ " € 1(TT. . E / b
1(0) = _E/a (@)= 3B V) + e

with Uy < --- < Uy are points where « is not € and

AO/(Ui) = O/(Uj_) - O/(U-_) S Ta(Ui)M~

2

Démonstration. We have

o’ 1
<@a V> = E<O/a V/>
On |U;, U;41[, we have
d
< /7V,> = @(O/,V> - <O/lvv>'
S
© Uiy1 U Uit
[ @vde=@ e - [ v de

Ui Ui

We sum up to obtain the desired formula. o

Corollaire 5.4. A piece-wise smooth curve a with constant speed ¢ > 0 is a geodesic if and only if
the first variation of L is zero for any variation with fixed ends.

Remarque. Fixed ends imply that V' is zero at a and b and

S k=0,

Démonstration. Suppose that « is a geodesic, that is o’/ = 0. Then « is smooth, so Ad/(U;) = 0.
In particular, we get V(a) = V(b) = 0 and so L'(0) = 0.

Suppose that L'(0) = 0. First we show that « is a geodesic on |U;, U;41], that is &/ (t) = 0
for t € |Us, Uis1[. Let y be in Tq4)M and f a smooth function defined on [a,b] with supp f C
[t —d,t4+ 0] C|U;,Uiya1[ and f € [0,1] and f =1 on |t —§/2,t+ §/2[. Let Y be the vector field
obtained by parallel transport of y along «, that is %Y =0and Y(¢) = 0. Let V := fY. Then
V(a) = V(b) = 0. Let exp be the exponential map, that is the map

exp,,: DcCcT,M— M
with p € M where
exp(v) = B(1)
where B is the geodesic starting at p with initial speed v and where
D ={veT,M | B(1) exists}.

Let x(u,v) = expy ) (vV (u)). Then z(u,v) is a variation of a with fixed ends. So L'(0) = 0 and
then

b
0:/ (" v) du
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t+0
- [ .

-5
This implies that
Vy S T'y(t)Mv <O//(t)7 y> =0

and so o/ (t) = 0 on each |U;, Ujy1].
If y € Tow,)M, let f have its support in |U; 1, U;y1] with f =1 around U;. So
0="L/(0)=—=(Ad'(U),y), Wy
C

and so
Aa'(Ul-) =0. <&

We will compute L”(0) if L'(0) = 0. Any vector field Y along o decomposes as Y = Y7 + Y+
where YT = ¢(Y,a’)a’ = fa' and Y is orthogonal to o/. If a is a geodesic, then
Y/ — fIO/ + (YJ')/.
Moreover, we have (Y')+ = (Y1)

Théoréme 5.5 (second variation). Let v be a geodesic of constant speed ¢ > 0 and of sign €. If
is a variation of 7, then

b
L) == [ V) - RV ) duk S0 A,

where V(u) = x,(u,0) and A(u) = x4y (u, 0).

Let Q(p, q) be the space of smooth piece-wise curves from [a, b] to M starting at p and ending
at q. The tangent space to Q(p,q) at « is the set T,Q(p,q) of vector fields V along a with
V(a) = V(b) = 0. The index of o € Q(p, ¢) is the bilinear symmetric form

I,:T,Q — T,Q

such that I,(V,V) = L,(0) where z is a variation with fixed ends and variation vector V, that is

I,(V,W) = i/b<v’{v’l> —(R(V,d")W, 0"} du.

We have I, (V,W) = I,(V+, W).
Lemme 5.6. Let o be a non-null geodesic with sign €. Let M be a semi-Riemannian manifold with
index v. Then

1. if I, is semi-definite positive, then v = 0 or n;

2. if I, is semi-definite negative, then v =1 or n — 1.
Définition 5.7. Let v be a geodesic. A vector field Y along -~y is called Jacobi field if
Y// — R(K ,y/)’y/.
If x is a variation of v such that
Yo, u+— z(u,v) is a geodesic,

then the variation vector u —— %(u, 0) is a Jacobi field.
For all v,w € T, M, there exists an unique Jacobi field ¥ along 7 such that Y (0) = v and
Y/ (0) = w.

Définition 5.8. Two points o(a) and o(b) with a # b on a geodesic o are conjugate if there exists
a nontrivial Jacobi field Y such that J(a) = J(b) = 0.

Then o(a) and o(b) are conjugate if and only if there exists a variation z of o such that the map
u +— x(u,v) is a geodesic, for all v, started from o(a) such that %(b,O) = 0. This is equivalent
to the fact that the exponential map exp,: T,M — M is singular at bo'(0), that is there is a
tangent vector x to p at bo’(0) such that d(exp,)ss(0)(z) = 0.
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Lemme 5.9. Let o be a geodesic such that o (s) € T,(s)M is space-like. If (R(v,0”)v,¢") < 0 for
all v L ¢/, then there is no conjugate points along o.
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