Géométrie semi-riemannienne Éric Loubeau

Master $\mathbf 2$ de mathématiques fondamentales \cdot Université de Rennes Notes prises par Téofil Adamski (version du 5 avril 2023)

Sommaire

5 [Calculus of variations](#page-24-0)

Chapitre 1 *Differentiable manifolds*

1.1. Differentiable manifolds

Let *S* be a topological connected Hausdorff and paracompact space. A *chart* is a homeomorphism ξ from and open subset of *S* in a open subset $\eta(U) \subset \mathbb{R}^n$. It can be written

$$
\xi(P) = (x^1(p), \dots, x^n(p)), \qquad \forall p \in U
$$

where the maps x^i are called the *coordinates functions* of ξ and we will denote $\xi = (x^1, \ldots, x^n)$. Two charts ξ and η of dimension *n* intersect in a smooth manner if the maps $\xi \circ \eta^{-1}$ and $\eta \circ \xi^{-1}$ are of classe \mathscr{C}^{∞} .

An *atlas* is a collection of charts of dimension *n* such that

- for all point *p* ∈ *S*, there exist an open subset *U* such that *p* ∈ *U* ;
- two charts intersect in a smooth manner.

An atlas is *complete* if it contains all the charts of *S* which intersect in a smooth manner. Any atlas admits a completion.

Définition 1.1. A *differentiable manifold* is a topological space equipped with a complete atlas.

Exemples. – The euclidean space is a differentiable manifold.

 $-$ The sphere \mathbf{S}^n ⊂ \mathbf{R}^{n+1} is a differentiable manifold of dimension *n*.

– A cartesian product of differentiable manifolds is also a differentiable manifold.

Définition 1.2. Let *M* be a differentiable manifold. A function $f: M \longrightarrow \mathbf{R}$ is of class \mathscr{C}^{∞} if, for any chart (U, η) , the maps

$$
f \circ \eta^{-1} \colon \eta^{-1}(U) \longrightarrow \mathbf{R}
$$

is of class \mathscr{C}^{∞} .

The sum, product and inverse are of class \mathscr{C}^{∞} .

Définition 1.3. Let *M* and *N* be two differentiable manifolds. A map $\phi: M \longrightarrow N$ is of class \mathscr{C}^{∞} if, for any charts (U, ξ) of *M* and (V, η) of *N*, the map

$$
\eta \circ \phi \circ \xi^{-1} \colon \xi(U) \longrightarrow \eta(V).
$$

is of class \mathscr{C}^{∞} .

1.2. Tangent spaces and tangent bundle

Définition 1.4. Let $p \in M$ a point. Let $F(M)$ be the space of functions of class \mathscr{C}^{∞} on M. A *tangent vector* at the point *p* is a R-linear map $v : F(M) \longrightarrow \mathbf{R}$ satisfying the Leibniz rules

$$
v(fg) = f(p)v(g) + g(p)v(f).
$$

The space of all tangent vectors at the point *p* is the *tangent space at the point p*, denoted T_pM .

Let (U, ξ) a chart, $p \in U$ a point and $f \in F(M)$ a function. We denote $\eta = (x^1, \dots, x^m)$ and

$$
\frac{\partial f}{\partial x_i}(p) \coloneqq \frac{\partial (f \circ \eta^{-1})}{\partial u^i}(\eta(p)).
$$

where the notation u^i are the coordinates on \mathbb{R}^m . The map

$$
\partial_i|_p \coloneqq \frac{\partial}{\partial x_i}\bigg|_p : F(M) \longrightarrow \mathbf{R}
$$

are a tangent vector at the point *p*. The vectors $\partial_i|_p$ form a basis of T_pM .

Définition 1.5. Let $\phi: M \longrightarrow N$ be a map of class \mathscr{C}^{∞} . For all point $p \in M$, we define the **R**-linear map

$$
d\phi_p \colon \mathrm{T}_p M \longrightarrow \mathrm{T}_{\phi(p)} N
$$

by the equality

$$
d\phi_p(v) = v_{\phi} \in \mathrm{T}_{\phi(p)}N
$$

where

$$
v_{\phi}(g) \coloneqq v(g \circ \phi).
$$

With coordinate (x^1, \ldots, x^m) on *M* and (y^1, \ldots, y^n) , we have

$$
d\phi(p)(\partial_j|_p) = \sum_{i=1}^n \frac{\partial(y^i \circ \phi)}{\partial x^j}(p) \frac{\partial}{\partial y^i}\bigg|_{\phi(p)}.
$$

Remarque. If the maps $\phi: M \longrightarrow N$ and $\psi: N \longrightarrow P$ are smooth, then the composition $\psi \circ \phi$ is also a smooth map.

Définition 1.6. A *vector field* is a a map *V* which send each point $p \in M$ on a tangent vector $V_p \in T_pM$.

If
$$
f \in F(M)
$$
, we denote $V(f)(p) := V_p(f)$.

Définition 1.7. If $V(f)$ is of class \mathscr{C}^{∞} for all $f \in F(M)$, then *V* is of class \mathscr{C}^{∞} .

The sum of two vector fields is a vector field. The multiplication of a vector field by a function is a vector field. The *bracket* of two vector fields *V* and *W* is defined by

$$
[V, W]_p(f) \coloneqq V_p(W(f)) - W_p(V(f)).
$$

It is skew-symmectric R-bilinear. It satisfies the Jacobi identity

$$
[X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0.
$$

We have

$$
[fX, gY] = fg[X, Y] + f(X(g))Y - g(Y(f))X.
$$

Exemple. We have $[\partial_i, \partial_j] = 0$.

Définition 1.8. A differentiable manifold *P* is a *sub-manifold* of *M* if

– *P* ⊂ *M* ;

- the injection map *j* : $P \longrightarrow M$ is a map of class \mathscr{C}^{∞} ;
- − it differential $dj_p: T_pP \longrightarrow T_{j(p)}M$ is injective for all $p \in P$.

Théorème 1.9 *(Whitney).* Let *M* be a \mathscr{C}^{∞} -differentiable manifold of dimension *n*. Then there exists an immersion $M \longrightarrow \mathbf{R}^{2n}$.

The *tangent bundle* of *M* is $TM \coloneqq \bigsqcup_{p \in M} T_p M$. With $TM = \{(p, v) | p \in M, v \in T_p M\}$, we have a natural map $\pi: TM \longrightarrow M$ which satisfies $\pi^{-1}(p) = T_pM$. We can show that the tangent bundle is a manifold of dimension 2*n*. Indeed, let be (U, ξ) a chart on *M* with $\xi = (x^1, \ldots, x^n)$. Let $v \in T_pM$. We can write

$$
v = \sum v^i \left. \frac{\partial}{\partial x^i} \right|_p
$$

with $v^i \in \mathbf{R}$. We consider

$$
\tilde{\eta} \colon \begin{vmatrix} \pi^{-1}(U) \subset TM \longrightarrow \mathbf{R}^{2n}, \\ (p, u) \longmapsto (x^1(\pi(p, u)), \dots, x^n(\pi(p, u)), v^1, \dots, v^n). \end{vmatrix}
$$

where $v^i = v(x^i) =: \dot{x}^i(u)$. This defines a atlas on TM. If (u^1, \ldots, u^{2n}) are the coordinates on \mathbb{R}^{2n} , the transition functions are given by

$$
u^i \tilde{\xi} \circ \tilde{\eta}^{-1} = x^i \circ \pi \circ \tilde{\eta}^{-1}(a, b) = x^i \eta^{-1}(a),
$$

$$
u^i \tilde{\xi} \circ \tilde{\eta}^{-1} = \dot{x}^i \circ \tilde{\eta}^{-1}(a, b) = \sum b^k \frac{\partial x^i}{\partial y^k} (\eta^{-1}(a)).
$$

So the map $\tilde{\xi} \circ \tilde{\eta}^{-1}$ are of class \mathscr{C}^{∞} .

Remarque. A vector field $X: M \longrightarrow TM$ is a map of class \mathscr{C}^{∞} such that $\pi \circ X = \text{Id}_M$.

Remarque. In general, we have $TM \neq M \times \mathbb{R}^n$. This is the case for \mathbb{S}^3 .

Exemple. We consider the sphere S^2 . It is a manifold of dimension 2. We want to calculate it tangent space at a point $p \in \mathbf{S}^2$. Let $\gamma:]-\varepsilon, \varepsilon[\longrightarrow \mathbf{S}^2$ be a curve of class \mathscr{C}^{∞} on \mathbf{S}^2 with $\gamma(0) = p$. It acts on functions on S^2 . For a function $f: S^2 \longrightarrow \mathbf{R}$, we denote

$$
\dot{\gamma}(0) \cdot f := \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} (f \circ \gamma)(t)
$$

We have

$$
\left. \frac{\mathrm{d}\gamma}{\mathrm{d}t} \right|_{t=0} = \dot{\gamma}(0) \in \mathrm{T}_p \mathbf{S}^2
$$

and all tangent vector can be obtained this way. As $|\gamma|=1$, we find

$$
\frac{\mathrm{d}}{\mathrm{d}t}|\gamma(t)|^2 = 0 = 2\langle p, \dot{\gamma}(0)\rangle.
$$

Thus we conclude

$$
\mathrm{T}_p \mathbf{S}^2 = \{ X \in \mathbf{R}^3 \mid \langle X, p \rangle = 0 \}.
$$

Exemples. Open subsets of \mathbb{R}^n are differentiable manifolds. The half-plane $\mathbf{H}^2 := \mathbb{R} \times \mathbb{R}^*$ has the tangent space $T_p \mathbf{H}^2 = \mathbf{R}^2$ and so its tangle bundle is $T\mathbf{H}^2 = \mathbf{H}^2 \times \mathbf{R}^2$.

Exemples. – The image of the map

$$
\begin{vmatrix}]-1,1[\longrightarrow \mathbf{R}^2, \\ t \longmapsto (t,|t|) \end{vmatrix}
$$

is a differentiable manifold but not a submanifold of \mathbb{R}^2 .

– The map

$$
\begin{aligned} \left| \mathbf{R} \longrightarrow \mathbf{R}^2, \\ t \longmapsto (t^3, t^2) \end{aligned}
$$

is differentiable but not an immersion.

– The map

$$
\begin{aligned} \left| \mathbf{R} \longrightarrow \mathbf{R}^2, \\ t \longmapsto (t^3 - 4t, t^2 - 4) \end{aligned}
$$

- is differentiable and an immersion, but there is a self-intersection sot it is not an embedding. $-$ The map $t \mapsto (t, \sin(1/t))$ is an immersion with no self-intersecting point, but it is not an embedding.
- The cone $\{x^2 + y^2 z^2 = 0\}$ is not a submanifold of \mathbb{R}^3 for connectivity reasons.

1.3. Tensors

Let *V* be a module over a ring *K*.

Définition 1.10. Let $r, s \in \mathbb{N}$ be integers with $rs > 0$. A *tensor of type* (r, s) is a *K*-multilinear function

$$
(V^*)^r \times V^s \longrightarrow K.
$$

We denote $T^{r,s}(V)$ the set of tensors of type (r, s) .

A *tensor field* is a tensor on the ring $\mathscr{X}(M)$ which denotes the set of vectors field on a differentiable manifold M. The set $\mathscr{X}(M)$ is a module on the ring $F(M)$ of functions on M. So a tensor field of type (r, s) is a $F(M)$ -linear map

$$
A: \mathcal{X}^*(M)^r \times \mathcal{X}(M)^s \longrightarrow \mathcal{F}(M).
$$

Exemple. The map

$$
C: \begin{cases} \mathcal{X}^*(M) \times \mathcal{X}(M) \longrightarrow \mathcal{F}(M), \\ (\theta, X) \longmapsto \theta(X) \end{cases}
$$

is a tensor.

Counter-example. Let $\omega \in \mathcal{X}^*(M)$ a linear form. The map

$$
F: \begin{array}{c} \mathscr{X}(M) \times \mathscr{X}(M) \longrightarrow \mathrm{F}(M), \\ (X,Y) \longmapsto X(\omega(Y)) \end{array}
$$

is not a tensor field.

Remarque. When $A \in \mathrm{T}^{r,s}(V)$ and $B \in \mathrm{T}^{r',s'}(V)$, we can define the tensor $A \times B \in \mathrm{T}^{r+r',s+s'}(V)$ with the equality

 $A \otimes B(\theta^1, \ldots, \theta^{r+r'}, X_1, \ldots, X_{s+s'}) = A(\theta^1, \ldots, \theta^r, X_1, \ldots, X_s) A(\theta^{r+1}, \ldots, \theta^{r+r'}, X_{s+1}, \ldots, X_{s+s'}).$

Proposition 1.11. Let $p \in M$ and $A \in \mathrm{T}^{r,s}(M)$. Let $\overline{\theta}^i$ and θ^i be 1-forms which agree on p. Let \overline{X}_i and X_i be vector field which agree on p . Then

$$
A(\overline{\theta}^1,\ldots,\overline{\theta}^r,\overline{X}_1,\ldots,\overline{X}_s)(p)=A(\theta^1,\ldots,\theta^r,X_1,\ldots,X_s)(p).
$$

Thus we can define the map

$$
A_p \colon (\mathrm{T}_p^* M)^r \times (\mathrm{T}_p M)^s \longrightarrow \mathbf{R}.
$$

Démonstration. We show that, if $\theta^{i_0}(p) = 0$ or $X_{i_0}(p) = 0$, then $A(\theta^1, \ldots, \theta^r, X_1, \ldots, X_s)(p) = 0$. Let $(U, (x^1, \ldots, x^n))$ be a chart. Then we can write $X_{j_0} = \sum X^i \partial_i$. Let f be a bump function on *U* with $f(p) = 1$. We have $X_{j_0}(p) = 0 \Leftrightarrow X^i(p) = 0, \forall i$ and $f^2 X_{j_0}$ is a vector field and we can write $f^2 X_{j_0} = \sum f X^i (f \partial_i)$. So

$$
f^2 A(\theta^1, \dots, \theta^r, X_1, \dots, X_s) = A(\theta^1, \dots, \theta^r, X_1, \dots, f^2 X_{j_0}, \dots, X_s)
$$

=
$$
\sum_i f x^I A(\theta_1, \dots, \theta^r, X_1, \dots, f \partial_i, \dots, X^s)
$$

and *A*(*θ* 1 *, . . . , θ^r , X*1*, . . . , Xs*)(*p*) = 0. ⋄

Let
$$
(U, (x^1, \ldots, x^n))
$$
 be a map. Let $p \in U$. On U, we denote

$$
A^{i_1,\ldots,i_s}_{j_1,\ldots,j_s} := A(\mathrm{d} x^{i_1},\ldots,\mathrm{d} x^{i_r},\partial j_i,\ldots,\partial j_s)
$$

and we have

$$
A = \sum A^{i_1,\ldots,i_s}_{j_1,\ldots,j_s} \partial j_i \otimes \cdots \otimes \partial j_s \otimes dx^{i_1} \otimes \cdots \otimes dx^{i_r}
$$

.

The *contraction* of *A* on the indices *i* and *j* is the tensor field C_j^iA of type $(r-1, s-1)$ which is the composition of *C* and the tensor

$$
(\theta, X) \longmapsto A(\theta^1, \dots, \theta, \dots, \theta^r, X_1, \dots, X, \dots, X_s).
$$

The component of C_j^iA are $A_{j_1,...,m,...,j_s}^{i_1,...,m,...,i_r}$ with $m \in \{1,...,n\}$.

Définition 1.12. Let
$$
\phi \colon M \longrightarrow N
$$
 a differentiable map. If $A \in \mathrm{T}^{0,s}(N)$, we set

$$
\phi^*A(X_1,\ldots,X_s) \coloneqq A(d\phi(X_1),\ldots,d\phi(X_s)).
$$

The tensor $\phi^* A \in \mathrm{T}^{0,s}(M)$ is the *pull-back of A by* ϕ .

Définition 1.13. A *derivation of tensor* is a R-linear map

$$
D\colon \mathrm{T}^{r,s}(M)\longrightarrow \mathrm{T}^{r,s}(M)
$$

such that

$$
D(A \otimes B) = DA \otimes B + A \otimes DB
$$

and

$$
D(CA) = C(DA).
$$

For a function $f \in F(M) \subset T^{0,0}(M)$, we set $f \otimes A = fA$ and we have $D(fA) = fDA + (Df)A$. The derivation *D* is a derivation of functions so there exists a $V \in \mathcal{X}(M)$ such that $Df = V(f)$. The chain rule becomes

$$
D(A(\theta^1,\ldots,\theta^r,X_1,\ldots,X_s)) = (DA)(\theta^1,\ldots,\theta^r,X_1,\ldots,X_s)
$$

+
$$
\sum_{i=1}^r A((\theta^1,\ldots,\theta^i,\ldots,\theta^r,X_1,\ldots,X_s)) + \sum_{i=1}^s (\theta^1,\ldots,\theta^r,X_1,\ldots,DX_j,\ldots,X_s).
$$

Théorème 1.14. Given a vector field *V* and an **R**-linear map $\delta: \mathcal{X}(M) \longrightarrow \mathcal{X}(M)$ such that $\delta(fX) = V(f)W + f(\delta X)$,

there exists a unique derivation of tensors which equals to δ on $\mathscr{X}(M)$ and *V* on F(*M*).

Définition 1.15. Let $V \in \mathcal{X}(M)$. Then we set the derivation L_V as

$$
L_V(f) \coloneqq V(f) \qquad \text{et} \qquad L_V(X) \coloneqq [V, X]
$$

for all $f \in F(M)$ and $X \in \mathcal{X}(M)$. It is called the *Lie's derivation*.

Définition 1.16. Let *V* be a vector space. The *index* of a bilinear form *b* is the dimension of the largest subspace $W \subset V$ such that the restriction $b|_{W \times W}$ is negative definite. A vector $v \in V$ is *null* or *isotropic* if $v \neq 0$ and $b(v, v) = 0$.

Lemme 1.17. Let *V* and *W* be two linear spaces of the same dimension. Then they are equipped with inner products with the same indices if and only if the exists a linear isometry $V \longrightarrow W$.

Chapitre 2 *Semi-riemannian manifolds*

2.1. First definitions

Définition 2.1. A *metric* on a differentiable manifold *M* is a tensor field *g* on *M* of type $(0, 2)$ which is symmetric, non-degenerate and with a constant index. A *semi-riemannian manifold* is a manifold *M* equipped with a metric *g*.

In general, two different metrics on a same manifold *M* gives two different semi-riemannian structures on *M*. If the index is zero, then we say that the semi-riemannian manifold (M, g) is *riemannian*. If the index is one, then we will call it *lorentzian*.

In local coordinates $(U, (x^1, \ldots, x^n))$, we can write $g = \sum g_{i,j} dx^i \otimes dx^j$ with $g_{i,j} = g(\partial i, \partial j)$. The matrix $(g_{i,j})$ is invertible, the inverse will be denoted $(g^{i,j})$.

Exemple. Let $\nu \leq n$ be a natural integer. On the space \mathbb{R}^n , we have the semi-riemannian structure \mathbf{R}_{ν}^{n} with the metric

$$
\langle u, v \rangle = -\sum_{i=1}^{\nu} u^i w^i + \sum_{i=\nu+1}^n v^i w^i.
$$

Définition 2.2. Let $p \in M$. Let (M, g) be a semi-riemannian manifold. A tangent vector $v \in T_pM$ is

 $- space-like if v = 0 or q(v, v) = 0;$

- $null$ if $v \neq 0$ and $q(v, v) = 0$;
- *time-like* if $q(u, u) < 0$.

Null vectors form the *null cone*.

If $P \subset M$ is a submanifold and M is equipped with a riemannian metric g, the P is a riemannian manifold. For example, the sphere S^2 admits a riemannian metric. But this is not always true for semi-riemannian metrics.

Lemme 2.3. Let (M, g_M) and (N, g_N) two semi-riemannian manifolds. Let $\pi \colon M \times N \longrightarrow M$ and $\sigma: M \times N \longrightarrow N$ the two projections. Then the map $g := \pi^* g_N + \sigma^* g_N$ is a semi-riemannian metric on $M \times N$.

Définition 2.4. An *isometry* between two semi-riemannian manifolds (M, q) and (N, h) is a diffeomorphism $\phi: M \longrightarrow N$ which preserves the metrics, that is $\phi^* g = h$ or

$$
\forall p \in M, \ \forall u, w \in \mathrm{T}_pM, \qquad h_{\phi(p)}(d\phi_p(u), d\phi_p(v)) = g_p(u, v).
$$

Exemple. Let (u^1, \ldots, u^n) be the natural coordinates on \mathbb{R}^n_ν . Let *V* and *W* two vector fields on \mathbb{R}^n . We denote $W = \sum W^i \partial_i$. We define $D_V W \coloneqq dW(V) = \sum V(W^i) \partial_i$. This is the *covariant derivative* of *W* with respect to *V* .

2.2. Connection and Levi-Civita connection

Définition 2.5. A *connection* on a manifold *M* is a map

$$
D: \begin{cases} \mathcal{X}(M) \times \mathcal{X}(M) \longrightarrow \mathcal{X}(M), \\ (X,Y) \longmapsto D_X Y \end{cases}
$$

such that

- D_VW is $F(M)$ -linear in V;
- D_VW is **R**-linear in W;
- $-D_V(fW) = V(f)W + fD_VW$.

Proposition 2.6. Let (M, g) be a semi-riemannian manifold. Let $V \in \mathcal{X}(M)$ a vector field. Let V^* be the 1-form defined by

$$
V^*(X) \coloneqq g(V, X).
$$

Then the map $V \mapsto V^*$ is a $F(M)$ -linear isomorphism.

Exemples. – We take the sphere S^2 . For a point $p \in S^2$ and two tangent vectors $X, Y \in T_pS^2$, we can define

$$
g_p(X, Y) \coloneqq \langle X, Y \rangle
$$

where the notation $\langle \cdot, \cdot \rangle$ is the standard inner product on \mathbb{R}^3 . This gives a riemannian metric on S^2 . If we replace the inner product $\langle \cdot, \cdot \rangle$ by another semi-riemannian metric on \mathbb{R}^3 , then this metric is no longer semi-riemannian in general.

 $-$ If g is a riemannian metric, then a another riemannian metric is given by

$$
\tilde{g}_p(X, Y) \coloneqq e^{f(p)} g_p(x, y)
$$

for a smooth function $f \in \mathscr{C}^{\infty}(M,\mathbf{R})$.

– There exists three vector fields E_i on S^3 which form a orthonormal family where the semiriemannian is the same as the first example. Then we can define a new semi-riemannian metric by

$$
\circ \langle E_i, E_j \rangle = 0 \text{ for all } i \neq j;
$$

$$
\circ |E_1|^2 = -1 \text{ and } |E_2|^2 = |E_3|^2 = 1.
$$

– On the half-plane \mathbf{H}^2 , we can define the metric

$$
g \coloneqq \frac{\mathrm{d}x^2 + \mathrm{d}y^2}{y^2}.
$$

Question. When can we equip M with a semi-riemannian metric? It is not always the case for a semi-riemannian metric with strictly positive index. But it is always the cases for a riemannian metric. There is two ways to do that :

 $-$ by using the Withney's theorem : the exists an immersion *ι*: *M* → **R**^{*N*} for a large enough integer *N* and we take the pullback of the euclidean matric on \mathbb{R}^N , that is

$$
g_p(X, Y) \coloneqq \langle d\iota_p(X), d\iota_p(Y) \rangle;
$$

 $-$ if (U_i, x^i) are an atlas of M , we define

$$
g_p \coloneqq \sum_i \alpha_i x_i^* \langle \cdot, \cdot \rangle_{\mathbf{R}^n}.
$$

Théorème 2.7. Let (*M, g*) be a semi-riemannian manifold. Then there exists a unique connection *D* such that, for all vector fields *V* and *W*, we have

CHAPITRE 2. SEMI-RIEMANNIAN MANIFOLDS 9

$$
- [V,W] = D_V W - D_W V ;
$$

- Xg(V,W) = g(D_XV,W) + g(V, D_XW)

Moreover, the connection *D* is characterized by the *Koszul formula*

$$
2g(D_VW, X) = V(g(X, W)) + W(g(X, V)) - Xg(V, W)
$$

- $g(V, [W, X]) + g(W, [X, V]) + g(X, [V, W]).$

It is called the *Levi-Civita connection*.

Démonstration. Let *D* be a connection satisfying these two points. In the right-hand side of the Koszul formula, using the two points, we obtain $2q(D_VW, X)$. This proves the uniqueness because of the one-to-one correspondance between vector fields and 1-forms.

Let proves the existence. Let $F(V, W, X)$ the right-hand side of the Koszul formula. Then if we take two vector fields *V* and *W*, then the map $F(V, W, \cdot): \mathcal{X}(M) \longrightarrow \mathbf{R}$ is $F(M)$ -linear. So it is a 1-form. Thus there exists a unique vector field D_VW such that

$$
g(D_V W, X) = F(V, W, X), \qquad \forall X \in \mathcal{X}(M).
$$

This show the Koszul formula and that the map *D* is a connection. With this formula, we can prove the two points.

Notation. We will write ∇ for the Levi-Civita connection. With this notation and $g(\cdot, \cdot) = \langle \cdot, \cdot \rangle$, the two points of the theorem are

$$
X \langle Y, Z \rangle = \langle \nabla_X Z, Y \rangle + \langle \nabla_X Y, Z \rangle,
$$

\n
$$
[X, Y] = \nabla_X Y - \nabla_Y X.
$$

Définition 2.8. The *Christoffel symbols* for the chart (U, x^i) are the functions on *U* given by

$$
D_{\partial_i}(\partial_j) = \sum_{k=1}^n \Gamma_{i,j}^k \partial_k.
$$

Recall that $[\partial_i, \partial_j] = 0 = D_{\partial_i}(\partial_j) - D_{\partial_j}(\partial_i)$ by the Schwarz theorem, so $\Gamma_{i,j}^k = \Gamma_{j,i}^k$. Moreover, if $W = \sum W^j \partial_j$ on *U*, then

$$
D_{\partial_i}(W) = \sum_j (\partial_i(W^j)\partial_j + W^j \sum_k \Gamma^k_{i,j} \partial_k)
$$

=
$$
\sum_k (\partial_i(W^j) + \sum_j W^j \Gamma^k_{i,j}) \partial_k
$$

By Koszul formula, we have

$$
\Gamma_{i,j}^k = \frac{1}{2}\sum_\ell g^{k,\ell}\bigg(\frac{\partial g_{\ell,j}}{\partial x^i} + \frac{\partial g_{\ell,i}}{\partial x^j} - \frac{\partial g_{i,j}}{\partial x^\ell}\bigg)\,.
$$

Exemple. On \mathbb{R}^n_ν , we have $\Gamma^k_{i,j} = 0$.

2.3. Curvature and Ricci tensor

Definition-proposition 2.9. Let (M, g) a semi-riemannian manifold and ∇ its Levi-Civita connection. The the map

$$
R: \begin{aligned} \begin{aligned} R: & \left| \mathcal{X}(M) \times \mathcal{X}(M) \times \mathcal{X}(M) \longrightarrow \mathcal{X}(M) \\ & (X, Y, Z) \longmapsto R(X, Y)Z \coloneqq \nabla_{[X, Y]} Z - \nabla_X \nabla_Y Z + \nabla_Y \nabla_X Z \end{aligned} \right. \end{aligned}
$$

is a tensor field of type (1*,* 3), called the *riemannian curvature*.

There is a version of type (0*,* 4) given by

$$
R(X, Y, Z, W) = g(R(X, Y)Z, W).
$$

Démonstration. We need to check that $R(fX, Y)Z = fR(X, Y)Z$ and $R(X, Y)(fZ) = fR(X, Y)Z$. We have $[fX, Y] = fXY - Y(f)X - fYX$ and

$$
\nabla_{[fX,Y]}Z = f\nabla_X \nabla_Y Z
$$

which prove the formula. \Diamond

Proposition 2.10. We have the following properties :

1. $R(X, Y)Z = -R(X, Y)Z;$ 2. $g(R(X, Y)Z, W) = -g(R(X, Y)W, Z);$ 3. $R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0$; 4. $g(R(X, Y)Z, W) = g(R(Z, W)X, Y).$

Démonstration. 2. With $q(\cdot, \cdot) = \langle \cdot, \cdot \rangle$, one has

$$
g(R(X,Y)Z,Z) = \langle \nabla_{[X,Y]}Z - \nabla_X \nabla_Y Z + \nabla_Y \nabla_X Z, Z \rangle
$$

\n
$$
= \langle \nabla_{[X,Y]}Z, Z \rangle - \langle \nabla_X \nabla_Y Z, Z \rangle + \langle \nabla_Y \nabla_X Z, Z \rangle
$$

\n
$$
= [X,Y] \left(\frac{\langle Z, Z \rangle}{Z} \right) - X \langle \nabla_Y Z, Z \rangle + \langle \nabla_Y Z, \nabla_X Z \rangle + Y \langle \nabla_X Z, Z \rangle - \langle \nabla_X Z, \nabla_Y Z \rangle
$$

\n
$$
= [X,Y] \left(\frac{\langle Z, Z \rangle}{Z} \right) - XY \left(\frac{\langle Z, Z \rangle}{Z} \right) + Y \left(X \left(\frac{\langle Z, Z \rangle}{Z} \right) \right) = 0.
$$

So *g*(*R*(*X, Y*)(*Z* + *W*)*, Z* + *W*) = 0 and we conclure by bilinearity. ⋄

Remarque. The map *R* is a tensor. For *X, Y, Z* $\in \mathcal{X}(M)$ and $p \in M$, the quantity $(R(X, Y)Z)_p$ only depend on the values $X(p)$, $Y(p)$ and $Z(p)$. So we can define $R_p(u, v)w$ for $u, v, w \in T_pM$.

Proposition 2.11. Let *X*, *Y* and *Z* be three vector fields. Then

$$
(\nabla_Z R)(X,Y) + (\nabla_X R)(Y,Z) + (\nabla_Y R)(Z,X) = 0.
$$

Remarque. We have

$$
(\nabla_X R)(Y,Z)W = \nabla_X (R(Y,Z)W) - R(\nabla_X Y,Z)W - R(Y,\nabla_X Z)W - R(Y,Z)\nabla_X W.
$$

Moreover, we have

$$
(\nabla_X g)(Y,Z) = X(g(Y,Z)) - g(\nabla_X Y, Z) - g(X, \nabla_X Z) = 0.
$$

Démonstration. We prove the identity on a basis. We choose $X = \partial_i$, $Y = \partial_j$ and $Z = \partial_k$. So

$$
(\nabla_Z R)(X,Y)W = [\nabla_Z, R(X,Y)]W - R(\nabla_Z X, Y)W - R(X, \nabla_Z Y)W
$$

and then

$$
(*) = (\nabla_Z R)(X, Y) + (\nabla_X R)(Y, Z) + (\nabla_Y R)(Z, X)
$$

\n
$$
= [\nabla_Z, R(X, Y)]W + [\nabla_X, R(Y, Z)]W + [\nabla_Y, R(Z, X)]
$$

\n
$$
- R(\nabla_Z X, Y)W - R(X, \nabla_Z Y)W
$$

\n
$$
- R(\nabla_X Y, Z)W - R(Y, \nabla_X Z)W
$$

\n
$$
- R(\nabla_Y Z, X)W - R(Z, \nabla_Y X)W
$$

\n
$$
= [\nabla_Z, R(X, Y)]W + [\nabla_X, R(Y, Z)]W + [\nabla_Y, R(Z, X)]
$$

\n
$$
+ R([X, Z], Y)W + R([Z, Y], X)W + R([Y, X], Z)W.
$$

But

$$
[\nabla_Z, R(X, Y)] = [\nabla_Z, [\nabla_X, \nabla_Y]] - [\nabla_Z, \nabla_{[X, Y]}]
$$

where the last term is null on *U* and so

$$
(*) = [\nabla_Z, [\nabla_X, \nabla_Y]] = [\nabla_X, [\nabla_Y, \nabla_Z]] + [\nabla_Y, [\nabla_Z, \nabla_Y]] = 0.
$$

Let $p \in M$ be a point and Π be a plane in T_pM . For two tangent vectors $v, w \in T_pM$ not null and not colinear, we define

$$
Q(v, w) := \langle v, v \rangle \langle w, w \rangle - \langle v, w \rangle^{2}.
$$

This gives a semi-riemannian metric. The plane Π is *nondegenerate* if

$$
Q(v, w) \neq 0, \qquad \forall v, w \in \Pi \setminus \{0\}, \ v \not\propto w.
$$

The quantity $|Q(v, w)|$ is the volume of the parallelogram defined by the vectors *v* and *w*. If Π is not degenerate, then we define the *sectional curvature* of Π bu

$$
K(\Pi) \coloneqq \frac{g(R(v, w)v, w)}{Q(v, w)}.
$$

This definition does not depend on the choice of the vectors *v* and *w*.

Proposition 2.12. If $K(\Pi) = 0$ for all plane $\Pi \subset T_pM$, then $R = 0$ at the point p.

- *Démonstration.* 1. If *v* and *w* define a nondegenerate plane Π, then it suffices to apply the implication $K(\Pi) = 0 \Rightarrow \langle R(v, w)v, w \rangle = 0.$
	- 2. If they define a degenerate plane, then *v* and *w* can be approximated by vectors which define a nondegenerate plane. If *v* is null, let *x* be a tangent vector such that $\langle u, x \rangle \neq 0$. If not, let *x* be the opposite of the causal type of *v*. Then $Q(u, x) < 0$. Let $\delta \neq 0$ a small real number such that the vectors *v* and $w + \delta x$ define a nondegenerate plane. We assume $\delta = 1$. So thank to the first case, we get

$$
\langle R(u, w)u, x \rangle + \langle R(u, x)u, w \rangle = 0
$$

which implies $\langle R(u, w)u, x \rangle = 0$ for all x and so $R(u, w)u = 0$. Thus $R(v + x, w)(v + x) = 0$ and $R(v, w)x + R(x, w)v = 0$, so $R(u, w)x = R(w, x)u$. If we do $u \leftrightarrow w$, we get $R(w, u)x =$ $R(u, x)u$. So we have $R(u, w)x = R(w, x)u = R(x, v)w$. But the first Bianchi identity gives

$$
R(u, w)x + R(w, x)u + R(x, u)w = 0
$$

and so $R(u, w)x = 0$. Thus $R = 0$.

Corollaire 2.13. If the sectional curvature of *M* is, at a point *p*, constant to *c*, then

$$
\forall x, y, z \in T_p M, \qquad R(x, y)z = c(\langle y, z \rangle x - \langle x, z \rangle y).
$$

Définition 2.14. – The *Ricci tensor* is a $(0, 2)$ -tensor obtainned by contraction of

$$
Ric(X, Y) \coloneqq \sum_{m=1}^{n} \varepsilon_m g(R(X, E_m), E_m)
$$

where (E_i) is a orthonormal frame (whe $g(E_i, E_j) = 0$ if $i \neq j$ and $g(E_i, E_i) = \varepsilon_i = \pm 1$). This defines a symmetric form.

– The *scalar curvature* is the function

$$
scal \coloneqq \sum_{m=1}^n \varepsilon_m \operatorname{Ric}(E_m, E_m).
$$

Proposition 2.15. We have d scal = $2 \text{ div}(Ric)$.

Démonstration. We set the notations.

- If *f* is a function, then *df* is a 1-form defined by $df(X) := X(f)$.
- $-$ If *T* is a (0, 2)-tensor, then div *T* is a 1-form defined by div $T(X) \coloneqq \sum_{m=1}^{n} \varepsilon_m \nabla_{E_m} T(E_m, X)$.
- We work with a vector field *X* such that $(\nabla_Y X)_p = 0$ for $Y \in \mathcal{X}(M)$.
- We work with an orthonormal basis (E_m) such that $(\nabla_Y E_m)_p = 0$ for $Y \in \mathcal{X}(M)$.

At *p*, we have

$$
d\mathrm{scal}=X(\mathrm{scal})
$$

$$
= \sum_{m,j} \varepsilon_m \varepsilon_j X(g(R(E_m, E_j)E_j, E_m))
$$

=
$$
\sum_{m,j} \varepsilon_m \varepsilon_j [g(\nabla_X (R(E_m, E_j)E_j), E_m) + g(R(E_m, E_j)E_j, \nabla_X E_m)]
$$

⋄

$$
\begin{split}\n&= \sum_{m,j} \varepsilon_m \varepsilon_j g((\nabla_X R)(E_m, E_j)E_j + R(\nabla_X E_m, E_j)E_m + R(E_m, \nabla_X E_i)E_m + R(E_m, E_j)\nabla_X E_m, E_m) \\
&= \sum_{m,j} \varepsilon_m \varepsilon_j g((\nabla_X R)(E_m, E_j)E_j, E_m) \\
&= \sum_{m,j} \varepsilon_m \varepsilon_j[-g((\nabla_{E_j} R)(X, E_m)E_j, E_m) - g((\nabla_{E_m} R)(E_j, X)E_j, E_m)] \\
&= -\sum_{m,j} \varepsilon_m \varepsilon_j[(\nabla_{E_m} R)(E_j, X, E_j, E_m) + \nabla_{E_j} R(X, E_m, E_j, E_m)] \\
&= \sum_{m,j} \varepsilon_m \varepsilon_j[(\nabla_{E_j} R)(E_j, E_m, E_m, X) + \nabla_{E_M} R(E_m, E_j, E_j, X)] \\
&= 2 \sum_{m,j} \varepsilon_m \varepsilon_j(\nabla_{E_j} R)(E_j, E_m, E_m, X) \\
&= 2 \sum_{m,j} \varepsilon_m \varepsilon_j \nabla_{E_j} (R(E_j, E_m, E_m, X)) \qquad \text{because } \nabla g = 0 \\
&= 2 \sum_{m,j} \varepsilon_m \varepsilon_j \nabla_{E_j} (\text{Ric}(E_j, X)) \\
&= 2 \sum_{m,j} \varepsilon_m \varepsilon_j \nabla_{E_j} (\text{Ric}(X, E_j)) \\
&= 2 \sum_{m,j} \varepsilon_m \varepsilon_j(\nabla_{E_j} \text{Ric})(E_j, X) \\
&= 2 \text{div}(\text{Ric})X.\n\end{split}
$$

Definition-proposition 2.16. A semi-riemannian manifold (*M, g*) is an *Einstein manifold* if there exists a function *f* on *M* such that

$$
\operatorname{Ric}_p = f(p)g_p, \qquad \forall p \in M. \tag{*}
$$

If the dimension is greater than 3, then the function *f* is constant.

Démonstration. The idea is to take the divergence of the equation (∗). We have

$$
\begin{aligned}\n\text{div}(fg)(X) &= \sum_{i} \varepsilon_{i}(\nabla_{E_{i}}(fg))(E_{i}, X) \\
&= \sum_{i} \varepsilon_{i}[E_{i}(fg(E_{i}, X)) - fg(\nabla_{E_{i}}E_{i}, X) - fg(E_{i}, \nabla_{E_{i}}X)] \\
&= \sum_{i} \varepsilon_{i}[E_{i}(f)g(X, E_{i}) + f(E_{i}g(X, E_{i})) - fg(\nabla_{E_{i}}E_{i}, X) - fg(E_{i}, \nabla_{E_{i}}X)] \\
&= \sum_{i} \varepsilon_{i}E_{i}(f)g(X, E_{i}) \\
&= \left(\sum_{i} \varepsilon_{i}g(X, E_{i})E_{i}\right)(f) \\
&= X(f) = df(X)\n\end{aligned}
$$

and so $div(fg) = df$. Taking the divergence of the equation (*), we obtain $div(Ric) = df$ and, by the last proposition, we have $df = d \text{scal}/2$. Taking its trace, we get scal = $(\dim M)f$. Then we have scal = $2f + K$ for a constant *K*. As dim $M \ge 2$, the function scal is a constant and so does the function f . \Diamond

2.4. Killing vector field

Définition 2.17. A *Killing vector field* is a vector field such that the Lie derivative of the matrix *g* with respect to *X* is zero, that is

$$
\mathscr{L}_X g = 0.
$$

The associated flow of a vector field is the map

$$
\Psi \colon \begin{vmatrix} M \times I \longrightarrow M, \\ (p, t) \longmapsto \Psi_t(p) \end{vmatrix}
$$

such that

T.

$$
\Psi(p,0) = p \qquad \text{et} \qquad \left. \frac{\mathrm{d}\Psi(t,p)}{\mathrm{d}t} \right|_{t=0} = X(p).
$$

Proposition 2.18. A vector field *X* is a Killing vector field if and only if its flow is by isometries.

Démonstration. First, we show that

$$
\mathscr{L}_X g = \lim_{t \to 0} \frac{1}{t} [\Psi_t^* g - g]. \tag{1}
$$

By the chain rule, one has

$$
(\mathcal{L}_X g)(A, B) = X(g(A, B)) - g(\mathcal{L}_X A, B) - g(A, \mathcal{L}_X B)
$$

= $X(g(A, B)) - g([X, A], B) - g(A, [X, B])$
= $g(\nabla_X A, B) + g(A, \nabla_X B) - g(\nabla_X A - \nabla_A X, B) - g(A, \nabla_X B - \nabla_B X)$
= $g(\nabla_A X, B) + g(\nabla_B X, A).$

So *X* is a Killing vector field if and only if

$$
\forall A, B, \qquad g(\nabla_A X, B) = -g(A, \nabla_B X).
$$

But we have

$$
(\Psi_t^* g - g)(A, B) = g(d\Psi_t(A), d\Psi_t(B)) - g(A, B)
$$

= $g(d\Psi_t(A), d\Psi_t(B)) - g(A_{\Psi_t}, B_{\Psi_t}) + g(A_{\Psi_t}, B_{\Psi_t}) - g(A, B).$
one hand with $F - G \circ \alpha$, $\alpha(t) - \Psi_t$, and $G - g(A, B)$, we get

On the one hand, with $F = G \circ \alpha$, $\alpha(t) = \Psi_t$ and $G = g(A, B)$, we get

$$
\lim_{t \to 0} [g(A_{\Psi_t}, B_{\Psi_t}) - g(A, B)] = F'(0)
$$

= $Xg(A, B)$.

On the other hand, with $\tilde{A} = A_{\Psi_t}$ and $A \leftrightarrow A_{\Psi_t}$, we have

$$
g(d\Psi_t(A), d\Psi_t(B)) - g(A_{\Psi_t}, B_{\Psi_t}) = g(\tilde{A}, \tilde{B}) - g(A, B)
$$

= $g(\tilde{A} - A, \tilde{B}) + g(A, \tilde{B} - B)$

with

$$
\lim_{t \to 0} g(\tilde{A} - A, \tilde{B}) = \lim_{t \to 0} \frac{1}{t} [g(d\Psi_t(A) - A_{\Psi_t}, d\Psi_t(B))]
$$

\n
$$
= \lim_{t \to 0} \frac{1}{t} g(d\Psi_t(A - d\Psi_{-t}(A_{\Psi(t)})), d\Psi_t(B))
$$

\n
$$
= -\lim_{t \to 0} \frac{1}{t} g(d\Psi_t(d\Psi_{-t}(A_{\Psi(t)}) - A), d\Psi_t(B))
$$

\n
$$
= -g(\lim_{t \to 0} \frac{1}{t} [d\Psi_t(d\Psi_{-t}(A_{\Psi(t)}) - A)], \lim_{t \to 0} d\Psi_t(B_{\Psi_t})).
$$

But $\lim_{t\longrightarrow 0} d\Psi_t(B_{\Psi_t}) = B$ and

$$
\lim_{t \to 0} \frac{1}{t} [d\Psi_t (d\Psi_{-t}(A_{\Psi(t)}) - A)] = -[A, X]. \tag{*}
$$

If we conclude the equality $(*)$, then we will get the formula (1) . Let proove the equality $(*)$.

14 2.4. Killing vector field

Let Ψ be the flow of a vector field *V*. We must prove

$$
[V, W] = \lim_{t \to 0} \frac{1}{t} [d\Psi_{-t}(W_{\Psi_t} - W)] \tag{2}
$$

Let $F_p(t) = d\Psi_{-t}(W_{\Psi_t(p)})$. The right-hand side of the equation (2) is exactly $F'_p(0)$. Assume $V_p \neq 0$. Let (x_i) a system of local coordinates such that $\partial/\partial x_i = V$. Then locally

$$
x^1(\Psi_t(q)) = x^1(q) + t
$$
 et $x^j(\Psi_t(q)) = x^j(q)$, $j \ge 2$

and

$$
d\Psi_t\left(\frac{\partial}{\partial x_i}\right) = \sum_j \frac{\partial \Psi^j}{\partial x_i} \frac{\partial}{\partial x_j} = \frac{\partial}{\partial x_i}(\Psi_t).
$$

Let $W = \sum_i W^i \frac{\partial}{\partial x_i}$. Thus

$$
F_p(t) = \sum_i W^i(\Psi_t(p)) \frac{\partial}{\partial x_i}.
$$

and so

$$
F'_p(0) = \sum_i \frac{\mathrm{d}(W^i \circ \Psi_t(p))}{\mathrm{d}t} \Big|_{t=0} \frac{\partial}{\partial x_i}
$$

=
$$
\sum_i V_p(W^i) \frac{\partial}{\partial x_i}
$$

=
$$
\sum_i \frac{\partial W^i}{\partial x^1} \partial_i.
$$

So

$$
[V, W] = (\partial_1, W)
$$

= [\partial_1, \sum W^i \partial_i]
= \sum \partial_1(W^1) \partial_i + W^i [\partial_1, \partial_i]
= \sum \frac{\partial X^i}{\partial x^1} \partial_i = F'_p(0).

Lemme 2.19. Let X be a Killing vector field on a connected manifold M such that, for all point $p \in M$, we have

$$
X(p) = 0 \qquad \text{et} \qquad (\nabla X)_p = 0.
$$

Then $X = 0$ on M .

Démonstration. The set

$$
A := \{ q \in M \mid X(q) = 0 \text{ et } (\nabla X)_q = 0 \}
$$

is closed and nonempty. To conclude, we show that this set is open. Take $p \in A$ et Ψ_t the associated flow.

Since $X(p) = 0$, we have $\Psi_t(p) = 0$ for all *t*. Indeed, the flow satisfies $\Psi_t \circ \Psi_s = \Psi_{t+s}$. Thus we get

$$
\left. \frac{\mathrm{d}\Psi_{t+s}}{\mathrm{d}t} \right|_{t=0} (p) = \left. \frac{\mathrm{d}\Psi_t}{\mathrm{d}t} \right|_{t=0} (p) = X(p) = 0
$$

which concludes $\Psi_t(p) = \Psi_0(p) = p$.

Let proves that $d\Psi_t$: $T_pM \longrightarrow T_pM$ is the identity. We have $[X, Y]_p = (\nabla_X Y)_p - (\nabla_Y X)_p$. But the points $(\nabla_X Y)_p$ depends only on $X(p) = 0$, so $(\nabla_X Y)_p = 0$. So we have $(X(Y) - Y(X))_p = 0$ and

$$
\frac{d\Psi_t(Y_{\Psi_t}) - Y_p}{t} = 0.
$$

Let $F_p(t) \coloneqq d\Psi_t(Y_{\Psi_t})$. Then $F'_p(0) = 0$. With $Y = d\Psi_s(u)$, the function $t \mapsto d\Psi_{-t}(Y_{\Psi_t})$ has a null derivative, so $d\Psi_t = 0$. Finally, the flow acts by isométries, so the flow acts by the identity. \diamond

Remarque. Klling vector fields form a Lie algebra of finite dimension because $[\mathscr{L}_X, \mathscr{L}_Y] = \mathscr{L}_{[X,Y]}$. Moreover, the dimension is less then $n(n+1)/2$ where $n = \dim M$.

Proposition 2.20. Let *X* be a Killing vector field and $f := |X|^2/2$. Then

$$
\Delta f = -\operatorname{Ric}(X, X) + |\nabla X|^2.
$$

Démonstration. Only calculus. ⋄

Remarque. We compute grad $f = -\nabla_X X$.

Définition 2.21. The *divergence* of a vector field *X* is

 $\mathrm{div} V \coloneqq \mathrm{tr}(\nabla V).$

Théorème 2.22 *(Bochores).* Let *M* be a compact riemannian manifold with $\text{Ric}(X, X) \leq 0$ for all *X*. Then a Killing vector field is parallel, that is $\nabla X = 0$ on *M*. If Ric $\lt 0$, then there are no nonzero Killing vector field.

Démonstration. But the Stokes theorem, we have

$$
\int_M \operatorname{div} V = 0.
$$

Let $f = |X|^2/2$. We get

$$
\int_M \nabla f = 0 = \int_M -\text{Ric}(Y, X) + |\nabla X|^2
$$

and so $\nabla X = 0$. Moreover, if Ric < 0, then Ric $(Y, X) = 0$ for all *Y* and so $X = 0$.

Théorème 2.23 *(Berger).* Let *M* a compact riemannian manifold of even dimension with positive sectional curvature. The any Killing vector field has a zero.

Démonstration. Let *X* be a vector field. Let $f := |X|^2/2$. Then grad $f = -\nabla_X X$. If *X* has no zero, then *f* has a positive minimum at a point $p \in M$. Then Hess $f(p) \geqslant 0$. Let *V* be a vector field. Ten

Hess
$$
f(V, V) := \langle \nabla_V(\nabla f), V \rangle = \langle -\nabla_V \nabla_X X, V \rangle
$$

= $\langle R(V, X)X, V \rangle + \langle \nabla_V X, \nabla_V X \rangle$.

But $B: X \longmapsto \nabla_X X$ is skew symmetric, so $(\nabla_X X)(p) = (\text{grad } f)_p = 0$, so *B* admits $\lambda = 0$ as an eigenvalue with $X(p)$ as a eigenvector. As dim *M* is even, there exists another eigenvector *V* corresponding to $\lambda = 0$.

Chapitre 3 *Geodesics*

3.1 [First definitions](#page-20-1) . 17

3.1. First definitions

Définition 3.1. Let *M* be a differential manifold. Let $I := [-\varepsilon, \varepsilon] \subset \mathbb{R}$ be a interval centered at the origin and *γ* : $I \longrightarrow M$ a curve. A *vector field along the curve γ* is a map $X: I \longrightarrow TM$ such that

$$
\forall t \in I, \qquad X(t) \in \mathcal{T}_{\gamma(t)}M.
$$

Exemple. The map $t \mapsto (\gamma(t), \gamma'(t))$ is a vector field along the curve γ .

Proposition 3.2. Let *M* a semi-riemannian manifold et $\gamma: I \longrightarrow M$ a curve. Then there exists a unique R-linear operator

$$
\frac{D}{dt} \colon \{\text{vector fields along } \gamma\} \longrightarrow \{\text{vector fields along } \gamma\}
$$

such that

$$
- \frac{D}{dt}(fX) = \frac{df}{dt}X + f\frac{D}{dt}X ;
$$

- If $X(t) = Y(\gamma(t))$, then $\frac{D}{dt}X = (\nabla_{\gamma}Y) \circ \gamma$.

Démonstration. Let $t_0 \in I$. Let (U, x) a chart on *M* and $J \subset I$ an interval such that $\gamma(J) \subset U$. Let $X_i \coloneqq \partial/\partial x_i$. If *Y* is a vector field along γ , we have

$$
T_{\gamma(t)}M \ni Y(t) = \sum_{j} \alpha_j(t)(X_j)_{\gamma(t)}.
$$

With the first two conditions, we get

$$
\frac{D}{dt}Y = \sum_{j} \alpha_j \frac{D}{dt}(X_i \circ \gamma) + \sum_{k} \alpha'_k X_k(\gamma)
$$

and, by the third condition, we obtain

$$
\dot{\gamma}_t = \sum \dot{\gamma}_i X_i(\circ \gamma)
$$

and

$$
\frac{D}{dt}(X_i \circ \gamma) = (\nabla_j X_j) \circ \gamma = \sum_i \dot{\gamma}_i (\nabla_{X_i} X_j) \circ \gamma.
$$

Put everything together

$$
\frac{D}{dt}Y = \sum_{k} \left(\alpha'_{k} \sum_{i,j} \Gamma^{k}_{i,j,\circ \gamma} \gamma'_{i} \alpha_{j} \right) X_{k} \circ \gamma.
$$

Therefore the operator exists and is unique. \Diamond

Remarque. The quantity $(\nabla_{\gamma'} X)(t)$ depends only on $\dot{\gamma}(t)$. We denote $\frac{D}{dt} Y$ by $\nabla_{\dot{\gamma}} Y$.

Définition 3.3. Let *M* be a semi-riemannian manifold and $\gamma: I \longrightarrow M$ a curve of class \mathscr{C}^{∞} . A vector field *X* along the curve γ is *parallel* if $\nabla_{\dot{\gamma}} X = 0$.

Définition 3.4. A curve γ is a *geodesic* if $\nabla_{\dot{\gamma}} \dot{\gamma} = 0$.

Théorème 3.5. Let *M* be a semi-riemannian manifold and $\gamma:$ $[a, b] \longrightarrow M$ be a curve. Let $t_0 \in I$ be a real number and $X_0 \in T_{\gamma(t_0)}M$ a tangent vector. Then there exists a unique vector field *Y* along the curve γ such that $Y(t_0) = X_0$.

Démonstration. Let (U, x) be a chart such that $\gamma(t_0) \in U$. Let $X_i := \partial/\partial x_i$. Let $J \subset I$ be a interval such that $\gamma(J) \subset U$. We denote

$$
\dot{\gamma}(t) = \sum \dot{\gamma}^i(t) X_i(\gamma(t)) \qquad \text{et} \qquad Y(t) = \sum_j \alpha_j(t) X_j(\gamma(t)).
$$

Then

$$
\frac{DY}{dt}(t) = \sum_{k} \left[\dot{\alpha}_{k}(t) + \sum_{i,j} \alpha_{j}(t) \dot{\gamma}_{i}(t) \Gamma_{i,j}^{k}(\gamma(t)) \right] X_{k}(\gamma(t))
$$

and so

$$
\frac{DY}{dt}(t) = 0 \iff \forall k, \ \dot{\alpha}_k(t) + \sum_{i,j} \alpha_j(t)\dot{\gamma}_i(t)\Gamma^k_{i,j}(\gamma(t)) = 0. \tag{*}
$$

Let admits the Picard-Lindelöf-Cauchy theorem :

Let $f: I \times U \longrightarrow \mathbb{R}^n$ *a continuous function which is Lipschitz in x. Then there exists an unique solution* $x: I \longrightarrow \mathbf{R}^n$ *of the system*

$$
x'(t) = g(t, x(t)) \qquad et \qquad x(t_0) = x_0.
$$

So there exists a solution to the equation $(*)$ for any initial data. One can extend $Y(t)$ to *I* because the coefficients in the equation (∗) are bounded for *t* ∈ *I*. ⋄

Lemme 3.6. Let *X* and *Y* be two parallel vector field along a curve γ . The the map

$$
t \longmapsto g_{\gamma(t)}(X(t), Y(t))
$$

a constant. For $X = Y = \dot{\gamma}$, if γ is a geodesic, then $g(\dot{\gamma}, \dot{\gamma}) = |\gamma|^2$ is constant.

Remarque. So causal type of geodesics is preserve on frame (X_i) .

Théorème 3.7. Let *M* be a semi-riemannian manifold. Let $p \in M$ and $v \in T_pM$. Then there exists an open interval *I* and a unique geodesic $\gamma: I \longrightarrow M$ such that

$$
\gamma(0) = p \qquad \text{et} \qquad \dot{\gamma}(0) = v.
$$

Démonstration. Let (U, x) be a chart such that $\gamma(t_0) \in U$. Let $X_i := \partial/\partial x_i$. Let $J \subset I$ be a interval such that $\gamma(J) \subset U$. We write

$$
\dot{\gamma} = \sum_i \dot{\gamma}_i (X_i \circ \gamma).
$$

We have

$$
\nabla_{\dot{\gamma}} \dot{\gamma} \sum_{k} \left[\ddot{\gamma}_k(t) + \sum_{i,j} \dot{\gamma}_j(t) \dot{\gamma}_j(t) \Gamma^k_{i,j} \circ \gamma \right] X_k(\gamma(t)).
$$

So γ is a geodesic if and only if

$$
\ddot{\gamma}_k(t) + \sum_{i,j} \dot{\gamma}_j(t) \dot{\gamma}_j(t) \Gamma^k_{i,j} \circ \gamma, \qquad \forall k
$$

if on only if its components satisfy the systems of second order nonlinear ordinary differential equation. Existence is given, for any initial data p and v , by the Picard-Lindelöf-Cauchy theorem. \circ

Chapitre 4 *Examples*

Exemple. The euclidean space \mathbb{R}^n is a semi-riemannian manifold. The geodesics are straight lines. Indeed, we have $\Gamma_{i,j}^k = 0$ and a path γ must verify the equation

$$
\ddot{\gamma}^k + \Gamma^k_{i,j} \dot{\gamma}^i \dot{\gamma}_j = 0
$$

Exemple. The sphere $Sⁿ$ is a riemannian manifold. Indeed, it is a differentiable manifolds by the charts

$$
\pi_N\colon \left| \begin{array}{c} \mathbf{S}^n \setminus \{N\} \longrightarrow \mathbf{R}^n, \\ (x_1, \dots, x_n) \longmapsto \left(\frac{x_1}{1 - x_{n+1}}, \dots, \frac{x_n}{1 - x_{n+1}}\right) \end{array} \right|
$$

and

$$
\pi_S: \begin{pmatrix} \mathbf{S}^n \setminus \{S\} \longrightarrow \mathbf{R}^n, \\ (x_1, \dots, x_n) \longmapsto \left(\frac{x_1}{1 + x_{n+1}}, \dots, \frac{x_n}{1 + x_{n+1}}\right) \end{pmatrix}
$$

where the points *N* and *S* are the north and south poles. These two charts are bijective and we can verify that there compositions are \mathscr{C}^{∞} maps.

We find the tangent spaces. Let $p \in \mathbf{S}^n$. Take a curve $\gamma:]-\varepsilon, \varepsilon[\longrightarrow \mathbf{S}^n \text{ with } \gamma(0) = p$. Then we have $|\gamma(0)|^2 = 1$ and thus $\dot{\gamma}(0) \in \mathrm{T}_p\mathbf{S}^n$. We can prove $\mathrm{T}_p\mathbf{S}^n = \{X \in \mathbf{R}^{n+1} \mid \langle p, X \rangle = 0\}.$

We must equip the sphere with a metric. For $X, Y \in T_p S^n$, we set

$$
g_{\mathbf{S}^n,p}(X,Y) \coloneqq \langle X,Y \rangle_{\mathbf{R}^{n+1}}.
$$

Then the tensor g is a metric on the sphere $Sⁿ$. We get a riemannian manifold.

We must understand the Levi-Civita connection. We define the connection ∇ on S *ⁿ* by

$$
\nabla_X Y \coloneqq (\partial_X Y)^{\text{tangent}}
$$

and we will check that it is indeed the Levi-Civita connection. Here, the « tangent » is the projection on the tangent space according the decomposition $\mathbf{R}^{n+1} = \mathbf{R}p \oplus T_p \mathbf{S}^n$ and we denote $\partial_X Y = dY(X)$. First, we prove that

$$
\nabla_X Y = \partial_X Y + \langle X, Y \rangle p.
$$

The normal part of $\partial_X Y$ is $\langle \partial_X Y, p \rangle p$. But $\langle Y, p \rangle = 0$, so $X \langle Y, p \rangle = 0$ and $\langle \partial_X Y, p \rangle + \langle Y, \partial_Y p \rangle = 0$ and $\partial_X p = dp(X) = X$. So the normal part of $\partial_X Y$ is $-\langle X, Y \rangle p$. Next, we observe that

$$
\langle Z, \nabla_X Y \rangle = \langle Z, \partial_X Y \rangle.
$$

By the Koszul formula, we have

$$
2\langle Z,\partial_X Y\rangle = X\langle Z,Y\rangle - Z\langle X,Y\rangle
$$

and

$$
\langle Z, \partial_X Y \rangle = \langle Z, \nabla_X Y \rangle + Y \langle X, Y \rangle - \langle X, [Y,Z] \rangle + \langle Y, [Z,X] \rangle + \langle Z, [X,Y] \rangle.
$$

So we get the Koszul formula. By the uniqueness, this is the Levi-Civita connection.

Let us find the curvature. We have

$$
-R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z
$$

\n
$$
= \nabla_X (\partial_Y Z + \langle Z, Y \rangle p) - \nabla_Y (\partial_X Z + \langle Z, X \rangle p) - (\nabla_{[X,Y]} Z + \langle Z, [X,Y] \rangle p)
$$

\n
$$
= \partial_X \partial_Y z - \partial_Y \partial_X Z - \partial_{[X,Y]} z) + (\langle X, \partial_Y Z \rangle p - \langle Y, \partial_X Z \rangle p - \langle [X,Y], Z \rangle p) + (\partial_X \langle Y, Z \rangle p - \langle X, \langle Y, Z \rangle p) p - \langle Y, \partial_Y Z \rangle p - \langle [X,Y], Z \rangle p + \partial_X (\langle Y, Z \rangle p) - \partial_Y (\langle X, Z \rangle p).
$$

But $\partial_X(\langle Y, Z \rangle p) = \langle \nabla_X Y, Z \rangle p + \langle Y, \nabla_X Z \rangle p + \langle Y, Z \rangle p$ and so

$$
-R(X,Y)Z = \langle \nabla_X Y, Z \rangle p - \langle \nabla_Y X, Z \rangle p - \langle [X,Y], Z \rangle p + \langle Y, Z \rangle p - \langle X, Z \rangle p
$$

= $\langle Y, Z \rangle X - \langle X, Z \rangle Y.$

The sectional curvature is $K = +1$. The Ricci tensor is

$$
Ric(X, Y) = (n - 1)\langle X, Y \rangle
$$

and the scalar curvature is

$$
scal = n(n-1).
$$

Let us find the geodesics. Let γ a geodesics. Then $\nabla_{\dot{\gamma}} \dot{\gamma} = 0$. But

$$
\nabla_{\dot{\gamma}} \dot{\gamma} = (\partial_{\gamma} \dot{\gamma})
$$

= $\ddot{\gamma}$ ^{tangent}
= $\ddot{\gamma} - \ddot{\gamma}$ ^{normal}
= $\ddot{\gamma} - \langle \ddot{\gamma}, \gamma \rangle \gamma$.

After calculus, we find that the geodesics are great circles.

Exemple. The hyperbolic space is $\mathbf{H}^m \coloneqq \mathbf{R}_+^* \times \mathbf{R}^{m-1}$. Its tangent spaces are $T_p \mathbf{H}^m \simeq \mathbf{R}^m$. We equip this manifold with the metric

$$
g(X,Y) = \frac{\langle X, Y \rangle}{x_1^2}.
$$

It is a riemannian manifold with sectional curvature equal to −1.

We can choose others models of the hyperbolic space such as

$$
\mathbf{H}^m = \{ (x_0, \dots, x_m) \in \mathbf{R}^{m+1} \mid x_0 > 0, \ -x_0^2 + x_1^2 + \dots + x_m^2 = -1 \}.
$$

Equipped with the induce metric, it is a riemannian manifold. An other model is the Poincaré model

$$
\mathbf{D}^m := \{ x \in \mathbf{R}^m \mid |x| < 1 \}
$$

with the metric

$$
g(X,Y) = \frac{4}{(1-|x|^2)^2} \langle X, Y \rangle.
$$

The sectional curvature is also equal to -1 .

Exemple. The curvature of \mathbb{R}_1^m is zero, its geodesics are straight lines.

Exemple. We set the pseudo-sphere $\mathbf{S}_{\nu}^{n-1} \subset \mathbf{R}_{\nu}^n$. The tangent space is

$$
\mathcal{T}_p \mathbf{S}_{\nu}^{n-1} = \{ X \in \mathbf{R}^n \mid \langle p, X \rangle_{\mathbf{R}_{\nu}^n} = 0 \}.
$$

The pseudo-spere equipped with the metric $\langle \cdot, \cdot \rangle_{\mathbf{R}^n_\nu}$ is a riemannian manifold of signature $(\nu, n-1-\nu)$. It is diffeomorphic to $\mathbf{R}^{\nu} \times \mathbf{S}^{n-1-\nu}$ and it sectional curvature is +1. The geodesics are branches of hyperboloids, straight line or periodic curves on ellipsoids : we can prove this by considering different cases (the vectors to join are time, space or light like). More over, a curve *γ* is a geodesic if and only iff the curves $\ddot{\gamma}$ and γ are parallel.

Chapitre 5 *Calculus of variations*

Let *M* be a semi-Riemannian manifold. Let $\gamma: I \longrightarrow M$ be a curve. We recall that the set A_{γ} is the set of maps $Y: I \longrightarrow TM$ along the curve γ , that is such that

$$
\forall t \in I, \qquad Y(t) \in \mathcal{T}_{\gamma(t)}M.
$$

A such map *Y* can be write

$$
Y(t) = \sum_{j} \alpha_j(t) (X_j \circ \gamma)(t)
$$

on a chart (U, x^i) with $X_j := \partial/\partial x^j$. The derivation for A_γ is

$$
\frac{D}{dt}Y(t) = \sum_{k} \left(\dot{\alpha}_{k}(t) + \sum_{i,j} \Gamma_{ij}^{k}(\gamma(t))\dot{\gamma}_{i}(t)\alpha_{j}(t)\right)X_{k}(\gamma(t)).
$$

Facts.

- 1. For all $X_0 \in T_{\gamma(0)}M$, there exists $Y \in A_\gamma$ such that $Y(0) = X_0$ and $\frac{D}{dt}Y = 0$.
- 2. For all $X_0 \in T_a M$, there exists $t_0 > 0$ and $\gamma: [0, t_0] \longrightarrow M$ such that $\gamma(a) = X_0$ and $\frac{D}{dt} \gamma = 0$. Such a γ is called a $geodesic.$
- 3. We also write $\frac{D}{dt}Y = Y' = \dot{Y} = \nabla_{\dot{\gamma}}Y$.
- 4. If γ is a geodesic, then

$$
\frac{\mathrm{d}}{\mathrm{d}t}\langle\dot{\gamma},\dot{\gamma}\rangle=\langle\ddot{\gamma},\dot{\gamma}\rangle=0.
$$

Définition 5.1. Let *M* be a semi-Riemannian manifold. A *variation* of a function α : $[a, b] \rightarrow M$ of class \mathscr{C}^{∞} is a map $x: [a, b] \times]-\delta, \delta[\longrightarrow M$ of class \mathscr{C}^{∞} with $\delta > 0$ such that $x(u, 0) = \alpha(u)$. The *variation vector field* is the vector field *V* such that

$$
V(u) := \frac{\partial x}{\partial v}(u,0).
$$

The *length* of *α* is

$$
L(\alpha) := \int_a^b |\alpha'(s)| \,\mathrm{d} s
$$

where $|\cdot| = \sqrt{|\langle \cdot, \cdot \rangle|}$. The *length* of *V* is

$$
L(v) = L_x(v) = \int_a^b \left| \frac{\partial x}{\partial u}(s, v) \right| ds.
$$

We consider curves such that $|\gamma'(t)| > 0$, called *regular curves of space-like*. We denote ε the sign of $\langle \alpha', \alpha' \rangle$.

Lemme 5.2. If *x* is a variation of α with $|\alpha'| > 0$, then

$$
L'_x(0) = \varepsilon \int_a^b \langle \frac{\alpha'(u)}{|\alpha'(u)|}, V'(u) \rangle \, \mathrm{d}u.
$$

Démonstration. With $x_u = \frac{\partial x}{\partial u}$, we have

$$
L(u) := \int_a^b |x_u(u, v)| \, \mathrm{d}u.
$$

We have $\alpha' = x_u(u,0)'$. So for δ small enough, we have $|x_u(u,v)| > 0$ for $u \in [-\delta, \delta]$. So

$$
L'(0) = \int_a^b \frac{d}{du} \bigg|_{u=0} |x_u| dt.
$$

But we get

$$
\frac{\mathrm{d}}{\mathrm{d}u}|x_u| = \frac{1}{2} (\varepsilon \langle x_u, x_u \rangle)^{-1/2} 2\varepsilon \langle x_u, x_{uv} \rangle = \frac{\varepsilon \langle x_u, x_{uv} \rangle}{\langle x_u, x_u \rangle}.
$$

Take $u = 0$, we get $x_u(u, 0) = \alpha'(0)$ and $x_v(u, 0) = V(u)$ and $x_{uv}(u, 0) = V'(u)$.

Proposition 5.3 *(first variation).* Let α : [a, b] $\rightarrow M$ be a continuous and smooth curve piece-wise of constant speed $c > 0$ and of sign ε . Let x be a variation of α . Then

$$
L'(0) = -\frac{\varepsilon}{c} \int_a^b \langle \alpha'', V \rangle \, \mathrm{d}u - \frac{\varepsilon}{c} \sum_{i=1}^n \langle \Delta \alpha'(U_i), V(U_i) \rangle + \frac{\varepsilon}{c} \langle \alpha', V \rangle \big|_a^b
$$

with $U_1 < \cdots < U_k$ are points where α is not \mathscr{C}^{∞} and

$$
\Delta \alpha'(U_i) = \alpha'(U_i^+) - \alpha'(U_i^-) \in \mathcal{T}_{\alpha(U_i)}M.
$$

Démonstration. We have

$$
\langle \frac{\alpha'}{|\alpha'|}, V \rangle = \frac{1}{c} \langle \alpha', V' \rangle.
$$

On $]U_i, U_{i+1}[$, we have

$$
\langle \alpha', V' \rangle = \frac{\mathrm{d}}{\mathrm{d}u} \langle \alpha', V \rangle - \langle \alpha'', V \rangle.
$$

So

$$
\int_{U_i}^{U_{i+1}} \langle \alpha', V' \rangle \, \mathrm{d}u = \langle \alpha', V \rangle_{U_i}^{U_{i+1}} - \int_{U_i}^{U_{i+1}} \langle \alpha'', V \rangle \, \mathrm{d}u.
$$

We sum up to obtain the desired formula. \Diamond

Corollaire 5.4. A piece-wise smooth curve α with constant speed $c > 0$ is a geodesic if and only if the first variation of *L* is zero for any variation with fixed ends.

Remarque. Fixed ends imply that *V* is zero at *a* and *b* and

$$
\frac{\varepsilon}{2} \langle \alpha', V \rangle |_{a}^{b} = 0.
$$

Démonstration. Suppose that α is a geodesic, that is $\alpha'' = 0$. Then α is smooth, so $\Delta \alpha'(U_i) = 0$. In particular, we get $V(a) = V(b) = 0$ and so $L'(0) = 0$.

Suppose that $L'(0) = 0$. First we show that α is a geodesic on $]U_i, U_{i+1}[$, that is $\alpha''(t) = 0$ for $t \in [U_i, U_{i+1}]$. Let *y* be in $T_{\alpha(t)}M$ and *f* a smooth function defined on [a, b] with supp $f \subset$ $[t - \delta, t + \delta] \subset]U_i, U_{i+1}[$ and $f \in [0,1]$ and $f = 1$ on $]t - \delta/2, t + \delta/2[$. Let Y be the vector field obtained by parallel transport of *y* along α , that is $\frac{\partial}{\partial t}Y = 0$ and $Y(t) = 0$. Let $V = fY$. Then $V(a) = V(b) = 0$. Let exp be the exponential map, that is the map

$$
\exp_p: D \subset \mathrm{T}_p M \longrightarrow M
$$

with $p \in M$ where

$$
\exp_p(v) = B(1)
$$

where B is the geodesic starting at p with initial speed v and where

$$
D = \{ v \in T_p M \mid B(1) \text{ exists} \}.
$$

Let $x(u, v) = \exp_{\alpha(u)}(vV(u))$. Then $x(u, v)$ is a variation of α with fixed ends. So $L'(0) = 0$ and then

$$
0 = \int_a^b \langle \alpha'', v \rangle \, \mathrm{d}u
$$

CHAPITRE 5. CALCULUS OF VARIATIONS 23

$$
=\int_{t-\delta}^{t+\delta}\langle \alpha^{\prime\prime}, fY\rangle.
$$

This implies that

$$
\forall y \in \mathcal{T}_{\gamma(t)}M, \qquad \langle \alpha''(t), y \rangle = 0
$$

and so $\alpha''(t) = 0$ on each $]U_i, U_{i+1}[$.

If $y \in T_{\alpha(U_i)}M$, let f have its support in $]U_{i-1}, U_{i+1}[$ with $f = 1$ around U_i . So

$$
0 = L'(0) = -\frac{\varepsilon}{c} \langle \Delta \alpha'(U_i), y \rangle, \qquad \forall y
$$

and so

$$
\Delta \alpha'(U_i) = 0. \tag{8}
$$

We will compute $L''(0)$ if $L'(0) = 0$. Any vector field *Y* along α decomposes as $Y = Y^T + Y^{\perp}$ where $Y^T = \varepsilon \langle Y, \alpha' \rangle \alpha' =: f \alpha'$ and Y^{\perp} is orthogonal to α' . If α is a geodesic, then

$$
Y' = f'\alpha' + (Y^{\perp})'.
$$

Moreover, we have $(Y')^{\perp} = (Y^{\perp})'$.

Théorème 5.5 *(second variation).* Let γ be a geodesic of constant speed $c > 0$ and of sign ε . If x is a variation of γ , then

$$
L''(0) = \frac{\varepsilon}{c} \int_a^b \langle V'^{\perp}, V'^{\perp} \rangle - \langle R(V, \gamma')V, \gamma' \rangle \, \mathrm{d}u + \frac{\varepsilon}{c} \langle \gamma', A \rangle \big|_a^b
$$

where $V(u) = x_v(u, 0)$ and $A(u) = x_{vv}(u, 0)$.

Let $\Omega(p,q)$ be the space of smooth piece-wise curves from [a, b] to M starting at p and ending at *q*. The *tangent space* to $\Omega(p,q)$ at α is the set $T_{\alpha}\Omega(p,q)$ of vector fields *V* along α with $V(a) = V(b) = 0$. The index of $\sigma \in \Omega(p, q)$ is the bilinear symmetric form

$$
I_{\sigma} \colon \mathrm{T}_{\sigma}\Omega \longrightarrow \mathrm{T}_{\sigma}\Omega
$$

such that $I_{\sigma}(V, V) = L_x(\sigma)$ where *x* is a variation with fixed ends and variation vector *V*, that is

$$
I_{\sigma}(V, W) = \frac{\varepsilon}{c} \int_{a}^{b} \langle V'^{\perp}, V'^{\perp} \rangle - \langle R(V, \sigma')W, \sigma' \rangle \, \mathrm{d}u.
$$

We have $I_{\sigma}(V, W) = I_{\sigma}(V^{\perp}, W^{\perp}).$

Lemme 5.6. Let σ be a non-null geodesic with sign ε . Let M be a semi-Riemannian manifold with index *ν*. Then

1. if I_{σ} is semi-definite positive, then $\nu = 0$ or *n*;

2. if I_{σ} is semi-definite negative, then $\nu = 1$ or $n - 1$.

Définition 5.7. Let γ be a geodesic. A vector field *Y* along γ is called *Jacobi field* if

$$
Y'' = R(Y, \gamma')\gamma'.
$$

If *x* is a variation of γ such that

$$
\forall v, \qquad u \longmapsto x(u, v) \text{ is a geodesic,}
$$

then the variation vector $u \mapsto \frac{\partial x}{\partial v}(u, 0)$ is a Jacobi field.

For all $v, w \in T_pM$, there exists an unique Jacobi field *Y* along γ such that $Y(0) = v$ and $Y'(0) = w$.

Définition 5.8. Two points $\sigma(a)$ and $\sigma(b)$ with $a \neq b$ on a geodesic σ are *conjugate* if there exists a nontrivial Jacobi field *Y* such that $J(a) = J(b) = 0$.

Then $\sigma(a)$ and $\sigma(b)$ are conjugate if and only if there exists a variation *x* of σ such that the map *u* \rightarrow *x*(*u, v*) is a geodesic, for all *v*, started from *σ*(*a*) such that $\frac{\partial x}{\partial u}(b, 0) = 0$. This is equivalent to the fact that the exponential map $\exp_p: T_pM \longrightarrow M$ is singular at $b\sigma'(0)$, that is there is a tangent vector *x* to *p* at $b\sigma'(0)$ such that $\hat{d}(\exp_p)_{b\sigma'(0)}(x) = 0$.

Lemme 5.9. Let σ be a geodesic such that $\sigma^{\perp}(s) \in T_{\sigma(s)}M$ is space-like. If $\langle R(v, \sigma')v, \sigma' \rangle \leq 0$ for all $v \perp \sigma'$, then there is no conjugate points along σ .